Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 30(28): 72336-72353, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37166732

ABSTRACT

Increased use of nano-cerium oxide (nCeO2) in an array of industrial applications has raised environmental concerns due to potential increased loadings to the soil environment. This research investigated the potential adverse effects of nCeO2 (10-30 nm) on the soil microbial community in two exposure scenarios: direct application to soil, and indirect application to soil through chemical spiking of biosolids, followed by mixing into soil. Total Ce in test soils without, and with biosolids amendment, ranged from 44 to 770, and 73 to 664 mg Ce kg-1 soil, respectively. In order to help distinguish whether observed effects were elicited by the solid-phase colloids or the activity of dissolved Ce, a soluble Ce salt (Ce (NO3)3) treatment was included in select assays. A suite of tests was used to investigate effects on critical processes: microbial growth (heterotrophic plate count), microbial activity (organic matter (OM) decomposition, enzyme activity and, nitrification) and diversity (structural and functional). Although results showed significant inhibition on microbial growth in soil without biosolids amendment at ≥ 156 mg Ce kg-1 soil by week 5, these results were inconsistent and non-significant thereafter. In general, nCeO2 showed no evidence of consistent adverse effects on OM decomposition, nitrification, soil enzyme activities and functional diversity. Leucine aminopeptidase showed significant (p< 0.05) stimulatory effects over time at ≥ 44 mg Ce kg-1 in soils without biosolids, which was not observed in soils with biosolids amendment. The lack of inhibitory effects of nCeO2 may be attributed to its low solubility; Ce in soil extracts (0.01 M CaCl2) were all below detection (< 0.003 mg kg-1) in the nCeO2-spiked soils, but detectable in the Ce (NO3)3 samples. In contrast, soluble Ce at 359 mg Ce kg-1 showed a significant reduction in OM decomposition and effects on microbial genomic diversity based on the 16S rDNA data in soils with and without biosolids amendment (359 and 690 mg Ce kg-1). The nCeO2 behaviour and effects information described herein are expected to help fulfill data gaps for the characterization of this priority nanomaterial.


Subject(s)
Cerium , Nanoparticles , Soil Pollutants , Biosolids , Soil/chemistry , Nanoparticles/chemistry , Cerium/chemistry , Soil Pollutants/analysis
2.
Environ Toxicol Chem ; 38(12): 2593-2613, 2019 12.
Article in English | MEDLINE | ID: mdl-31433516

ABSTRACT

The oribatid soil mite Oppia nitens C.L. Koch, 1836, is a model microarthropod in soil ecotoxicity testing. This species has a significant role in supporting soil functions and as a suitable indicator of soil contamination. Despite its significance to the environment and to ecotoxicology, however, very little is known of its biology, ecology, and suborganismal responses to contaminants in the soil. In the present review, we present detailed and critical insights into the biology and ecology of O. nitens in relation to traits that are crucial to its adaptive responses to contaminants in soil. We used a species sensitivity distribution model to rank the species sensitivity to heavy metals (cadmium and zinc) and neonicotinoids (imidacloprid and thiacloprid) compared with other standardized soil invertebrates. Although the International Organization for Standardization and Environment and Climate Change Canada are currently standardizing a protocol for the use of O. nitens in soil toxicity testing, we believe that O. nitens is limited as a model soil invertebrate until the molecular pathways associated with its response to contaminants are better understood. These pathways can only be elucidated with information from the mites' genome or transcriptome, which is currently lacking. Despite this limitation, we propose a possible molecular pathway to metal tolerance and a putative adverse outcome pathway to heavy metal toxicity in O. nitens. Environ Toxicol Chem 2019;38:2593-2613. © 2019 SETAC.


Subject(s)
Mites/drug effects , Soil Pollutants/toxicity , Animals , Ecotoxicology , Mites/genetics , Mites/growth & development , Mites/metabolism
3.
Environ Toxicol Chem ; 38(10): 2111-2120, 2019 10.
Article in English | MEDLINE | ID: mdl-31211447

ABSTRACT

The use of neonicotinoids in agriculture is a critical environmental protection issue. Although there has been considerable research on pollinator exposure and aquatic toxicological effects, few studies have investigated the chronic impacts on soil-dwelling species. Given the application of neonicotinoids into soil systems, there is the potential for risk to soil invertebrates. The toxicity of 2 commercial formulations containing the active ingredients (a.i.) thiamethoxam (Actara® 240SC) or clothianidin (Titan™) was investigated using 3 soil invertebrate species: Oppia nitens, Eisenia andrei, and Folsomia candida. No adverse effects were observed for O. nitens at the highest tested concentrations (≥92 mg a.i./kg dry soil) after a 28-d exposure. Exposure to clothianidin resulted in a 28-d median inhibitory concentration (IC50) of 0.069 (95% confidence limits: 0.039-0.12) mg/kg dry soil for F. candida, and a 56-d IC50 of 0.26 (0.22-3.2) mg a.i./kg dry soil for E. andrei. Exposure to thiamethoxam was less toxic, with IC50s of 0.36 (0.19-0.66) and 3.0 (2.2-4.0) mg a.i./kg dry soil for F. candida and E. andrei reproduction, respectively. The observed toxicity for F. candida adult survival and reproduction and for E. andrei reproduction occurred at environmentally relevant concentrations. However, because clothianidin is a degradation product of thiamethoxam, and detection of clothianidin rose to levels of concern in the thiamethoxam-amended soils over time, the observed toxicity may be partly attributed to the presence of clothianidin. Environ Toxicol Chem 2019;38:2111-2120. © 2019 Crown in the right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.


Subject(s)
Guanidines/toxicity , Neonicotinoids/toxicity , Soil Pollutants/toxicity , Thiamethoxam/toxicity , Thiazoles/toxicity , Animals , Arthropods/drug effects , Arthropods/growth & development , Guanidines/chemistry , Insecticides/chemistry , Insecticides/toxicity , Neonicotinoids/chemistry , Oligochaeta/drug effects , Oligochaeta/growth & development , Reproduction/drug effects , Soil Pollutants/chemistry , Thiamethoxam/chemistry , Thiazoles/chemistry , Toxicity Tests
4.
Environ Toxicol Chem ; 36(10): 2756-2765, 2017 10.
Article in English | MEDLINE | ID: mdl-28440581

ABSTRACT

The use of engineered silver nanoparticles (AgNPs) is widespread, with expected release to the terrestrial environment through the application of biosolids onto agricultural lands. The toxicity of AgNPs and silver nitrate (AgNO3 ; as ionic Ag+ ) to plant (Elymus lanceolatus and Trifolium pratense) and soil invertebrate (Eisenia andrei and Folsomia candida) species was assessed using Ag-amended biosolids applied to a natural sandy loam soil. Bioavailable Ag+ in soil samples was estimated using an ion-exchange technique applied to KNO3 soil extracts, whereas exposure to dispersible AgNPs was verified by single-particle inductively coupled plasma-mass spectrometry and transmission electron microscopy-energy dispersive X-ray spectroscopy analysis. Greater toxicity to plant growth and earthworm reproduction was observed in AgNP exposures relative to those of AgNO3 , whereas no difference in toxicity was observed for F. candida reproduction. Transformation products in the AgNP-biosolids exposures resulted in larger pools of extractable Ag+ than those from AgNO3 -biosolids exposures, at similar total Ag soil concentrations. The results of the present study reveal intrinsic differences in the behavior and bioavailability of the 2 different forms of Ag within the biosolids-soils pathway. The present study demonstrates how analytical methods that target biologically relevant fractions can be used to advance the understanding of AgNP behavior and toxicity in terrestrial environments. Environ Toxicol Chem 2017;36:2756-2765. © 2017 Crown in the Right of Canada. Published Wiley Periodicals Inc., on behalf of SETAC.


Subject(s)
Arthropods/drug effects , Metal Nanoparticles/toxicity , Oligochaeta/drug effects , Silver Nitrate/toxicity , Silver/chemistry , Soil/chemistry , Animals , Arthropods/metabolism , Elymus/drug effects , Elymus/growth & development , Ions/chemistry , Metal Nanoparticles/chemistry , Microscopy, Electron, Transmission , Oligochaeta/metabolism , Reproduction/drug effects , Seedlings/drug effects , Silver Nitrate/chemistry , Soil Pollutants/toxicity , Toxicity Tests , Trifolium/drug effects , Trifolium/growth & development
5.
Anal Chem ; 89(4): 2505-2513, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28192905

ABSTRACT

The lack of an efficient and standardized method to disperse soil particles and quantitatively subsample the nanoparticulate fraction for characterization analyses is hindering progress in assessing the fate and toxicity of metallic engineered nanomaterials in the soil environment. This study investigates various soil extraction and extract preparation techniques for their ability to remove nanoparticulate Ag from a field soil amended with biosolids contaminated with engineered silver nanoparticles (AgNPs), while presenting a suitable suspension for quantitative single-particle inductively coupled plasma mass spectroscopy (SP-ICP-MS) analysis. Extraction parameters investigated included reagent type (water, NaNO3, KNO3, tetrasodium pyrophosphate (TSPP), tetramethylammonium hydroxide (TMAH)), soil-to-reagent ratio, homogenization techniques as well as procedures commonly used to separate nanoparticles from larger colloids prior to analysis (filtration, centrifugation, and sedimentation). We assessed the efficacy of the extraction procedure by testing for the occurrence of potential procedural artifacts (dissolution, agglomeration) using a dissolved/particulate Ag mass ratio and by monitoring the amount of Ag mass in discrete particles. The optimal method employed 2.5 mM TSPP used in a 1:100 (m/v) soil-to-reagent ratio, with ultrasonication to enhance particle dispersion and sedimentation to settle out the micrometer-sized particles. A spiked-sample recovery analysis shows that 96% ± 2% of the total Ag mass added as engineered AgNP is recovered, which includes the recovery of 84.1% of the particles added, while particle recovery in a spiked method blank is ∼100%, indicating that both the extraction and settling procedure have a minimal effect on driving transformation processes. A soil dilution experiment showed that the method extracted a consistent proportion of nanoparticulate Ag (9.2% ± 1.4% of the total Ag) in samples containing 100%, 50%, 25%, and 10% portions of the AgNP-contaminated test soil. The nanoparticulate Ag extracted by this method represents the upper limit of the potentially dispersible nanoparticulate fraction, thus providing a benchmark with which to make quantitative comparisons, while presenting a suspension suitable for a myriad of other characterization analyses.

6.
Anal Chem ; 88(20): 9908-9914, 2016 10 18.
Article in English | MEDLINE | ID: mdl-27629046

ABSTRACT

There is an increasing interest to use single particle-inductively coupled plasma mass spectroscopy (SP-ICPMS) to help quantify exposure to engineered nanoparticles, and their transformation products, released into the environment. Hindering the use of this analytical technique for environmental samples is the presence of high levels of dissolved analyte which impedes resolution of the particle signal from the dissolved. While sample dilution is often necessary to achieve the low analyte concentrations necessary for SP-ICPMS analysis, and to reduce the occurrence of matrix effects on the analyte signal, it is used here to also reduce the dissolved signal relative to the particulate, while maintaining a matrix chemistry that promotes particle stability. We propose a simple, systematic dilution series approach where by the first dilution is used to quantify the dissolved analyte, the second is used to optimize the particle signal, and the third is used as an analytical quality control. Using simple suspensions of well characterized Au and Ag nanoparticles spiked with the dissolved analyte form, as well as suspensions of complex environmental media (i.e., extracts from soils previously contaminated with engineered silver nanoparticles), we show how this dilution series technique improves resolution of the particle signal which in turn improves the accuracy of particle counts, quantification of particulate mass and determination of particle size. The technique proposed here is meant to offer a systematic and reproducible approach to the SP-ICPMS analysis of environmental samples and improve the quality and consistency of data generated from this relatively new analytical tool.

7.
Nanotoxicology ; 10(8): 1144-51, 2016 10.
Article in English | MEDLINE | ID: mdl-27108659

ABSTRACT

Nanomaterials are increasingly used in a wide range of products, leading to growing concern of their environmental fate. In order to understand the fate and effects of silver nanoparticles in the soil environment, a suite of toxicity tests including: plant growth with Elymus lanceolatus (northern wheatgrass) and Trifolium pratense (red clover); collembolan survival and reproduction (Folsomia candida); and earthworm avoidance, survival and reproduction (Eisenia andrei) was conducted. The effect of silver nanoparticles (AgNP) was compared with the effect of ionic silver (as AgNO3) in two agricultural field soils (a sandy loam and a silt loam). Lethal (LC50) or sub lethal (IC50) effect levels are presented for all endpoints and demonstrate that in most cases AgNO3 (i.e. ionic silver) was found to be more toxic than the AgNP across test species. The difference in effects observed between the two forms of silver varied based on test species, endpoint and soil type. In tests that were conducted across different soil types, organisms in the sandier soil had a greater response to the Ag (ionic and nano) than those in soil with a high silt content. Earthworms (avoidance behavior and reproduction) were the most sensitive to both AgNP and AgNO3, while plant emergence was the least sensitive endpoint to both forms of Ag. The use of a test battery approach using natural field soils demonstrates the need to better quantify the dissolution and transformation products of nanomaterials in order to understand the fate and effects of these materials in the soil environment.


Subject(s)
Metal Nanoparticles/toxicity , Silver Nitrate/toxicity , Silver/toxicity , Soil Pollutants/toxicity , Animals , Arthropods/drug effects , Arthropods/physiology , Elymus/drug effects , Elymus/growth & development , Ions , Metal Nanoparticles/chemistry , Oligochaeta/drug effects , Oligochaeta/physiology , Particle Size , Reproduction/drug effects , Silver/chemistry , Silver Nitrate/chemistry , Soil/chemistry , Soil Pollutants/chemistry , Surface Properties , Toxicity Tests , Trifolium/drug effects , Trifolium/growth & development
8.
Chemosphere ; 90(7): 2129-35, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23211322

ABSTRACT

Soil eco-toxicity testing was conducted in support of Canada's Chemical Management Plan (CMP) to fill data gaps for organic chemicals known to primarily partition to soil, and of which the persistence and inherent toxicity are uncertain. Two compounds representative of specific classes of chemicals: non-chlorinated bisphenols containing an -OH group (4,4'-methylenebis(2,6-di-tert-butylphenol (Binox)) and xanthene dyes (2',4',5',7'-tetrabromo-4,5,6,7-tetrachloro-3',6'-dihydroxy-, disodium salt (Phloxine B), 2',4',5',7'-tetrabromofluorescein (TBF), 4',5'-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF)) were evaluated. The effect of these substances on plant growth (Elymus lanceolatus and Trifolium pratense) and soil invertebrate survival and reproduction (Folsomia candida and Eisenia andrei) were assessed using a field-collected sandy soil. Binox was persistent throughout testing (up to 63 d) with an average recovery of 77±2.9% at test end. Binox was not toxic to plants (IC50s>1076 mg kg(-1)) or E. andrei (IC50s>2651 mg kg(-1)); however, a significant reduction in F. candida adult survival and reproduction (IC50=89 (44-149) mg kg(-1)) was evident. Phloxine B was also persistent throughout testing, with an average recovery of 82±3.0% at test end. Phloxine B was significantly more toxic than Binox, with significant reductions in plant root growth (IC50s ≥ 11 mg kg(-1)) and invertebrate reproduction (IC50s ≥ 22 mg kg(-1)). DBF toxicity was not significantly different from that of Phloxine B for plant root growth (IC50s ≥ 30 mg kg(-1)), but was significantly less toxic for shoot growth (IC50s ≥ 1758 mg kg(-1)), and invertebrate adult survival (IC50s ≥ 2291 mg kg(-1)) and reproduction (IC50s ≥ 451 mg kg(-1)). A comparison between all four xanthene dyes was completed using F. candida, with the degree of toxicity in the order of Phloxine B ≥ TBF∼DBF>TCF. The results from these studies will contribute to data gaps for poorly understood chemicals (and chemical groupings) under review for environmental risk assessments, and will aid in the validation of model predictions used to characterize the fate and effects of these substances in soil environments.


Subject(s)
Coloring Agents/toxicity , Eosine I Bluish/toxicity , Phenols/toxicity , Soil Pollutants/toxicity , Soil/chemistry , Animals , Arthropods , Ecotoxicology , Oligochaeta , Risk Assessment , Toxicity Tests
9.
Environ Toxicol Chem ; 31(4): 766-77, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22228553

ABSTRACT

The ability to assess the toxic potential of soil contamination within boreal regions is currently limited to test species representative of arable lands. This study evaluated the use of six boreal plant species (Pinus banksiana, Picea glauca, Picea mariana, Populus tremuloides, Calamagrostis Canadensis, and Solidago canadensis) and four invertebrate species (Dendrodrilus rubidus, Folsomia nivalis, Proisotoma minuta, and Oppia nitens) and compared their performance to a suite of standard agronomic soil test species using site soils impacted by petroleum hydrocarbon (PHC) and salt contamination. To maintain horizon-specific differences, individual soil horizons were collected from impacted sites and relayered within the test vessels. Use of the boreal species was directly applicable to the assessment of the contaminated forest soils and, in the case of the hydrocarbon-impacted soil, demonstrated greater overall sensitivity (25th percentile of estimated species sensitivity distribution [ESSD25] = 5.6% contamination: 10,600 mg/kg fraction 3 [F3; equivalent hydrocarbon range of >C16 to C34] Of/Oh horizon, and 270 mg/kg F3 Ahg horizon) relative to the standard test species (ESSD25 = 23% contamination: 44,000 mg/kg F3 Of/Oh horizon, and 1,100 mg/kg F3 Ahg horizon). For salinity, there was no difference between boreal and standard species with a combined ESSD25 = 2.3%, equating to 0.24 and 0.25 dS/m for the Ah and Ck horizons. The unequal distribution of soil invertebrates within the layered test vessels can confound test results and the interpretation of the toxic potential of a site. The use of test species relevant to boreal eco-zones strengthens the applicability of the data in support of realistic ecological risk assessments applicable to the boreal regions.


Subject(s)
Hydrocarbons/toxicity , Salts/toxicity , Soil Pollutants/toxicity , Soil/analysis , Alberta , Animals , Environmental Pollution/analysis , Invertebrates/drug effects , Petroleum/toxicity , Picea/drug effects , Pinus/drug effects , Poaceae/drug effects , Toxicity Tests , Trees/drug effects
10.
Environ Toxicol Chem ; 29(4): 971-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20821528

ABSTRACT

Few soil invertebrate species are available for the toxic assessment of soils from boreal or other northern ecozones, yet these soils cover the majority of Canada's landmass as well as significant portions of Eurasia. Oppia nitens (C.L. Koch) is an herbivorous and fungivorous oribatid mite found in soil throughout Holarctic regions, including Canada. Soil tests using O. nitens were performed using 15 different forest soil types and horizons to investigate test variability in adult survival and reproduction. Adult survival (86.1 +/- 1.1%) was consistent across soil types, with a coefficient of variation (CV) of 15%. However, reproduction varied significantly, ranging from 2.9 (+/-1.1) to 86.2 (+/-11.7) individuals, with a corresponding CV of 118 and 30%, respectively. Of the soil factors assessed (NH(3), NO(3), pH, phosphorus [P], organic matter content (OM), carbon:nitrogen (C:N), sand, silt, clay, and sodium adsorption ratio), soil organic matter (OM) explained 68% of the variation observed for reproduction. Increasing the OM using Sphagnum sp. peat moss resulted in optimal reproduction at 7% OM (8% peat content) with the lowest variability (CV of 20%). When assessing the toxicity of a reference chemical, boric acid, the effect of peat amendment reduced lethality to adults with no observable difference on reproduction. The use an age-synchronized culture reduced the test variability for reproduction relative to the use of unsynchronized cultures. Oppia nitens is a good candidate species for a standardized test design, with adult survival easily assessed in a relatively simple design. A long-term reproduction test with O. nitens will require the use of a synchronized population and, on occasion, OM amendment when testing soils with low organic matter content.


Subject(s)
Mites/drug effects , Soil Pollutants/toxicity , Animals , Mites/physiology , Organic Chemicals/analysis , Reproduction/drug effects , Soil Pollutants/analysis
11.
Environ Toxicol Chem ; 25(3): 823-35, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16566168

ABSTRACT

The effects of elevated metal concentrations in forest soils on terrestrial organisms were investigated by determining the toxicity of six site soils from northern Ontario and Quebec, Canada, using a battery of terrestrial toxicity tests. Soils were collected from three sites on each of two transects established downwind of nickel (Sudbury, ON, Canada) and copper (Rouyn-Noranda, PQ, Canada) smelting operations. Site soils were diluted to determine if toxicity estimates for the most-contaminated site soils could be quantified as a percent of site soil. Rouyn-Noranda soils were toxic following acute exposure (14 d) to plants, but not to invertebrates (7 d for collembola and 14 d for earthworms). However, Rouyn-Noranda soils were toxic to all species following chronic exposure (21, 35, and 63 d for plants, collembola, and earthworms, respectively). The toxicity of the Rouyn-Noranda site soils did not correspond to the gradient of metal concentrations in soil. Metal-contaminated Sudbury soils were toxic to plants but not to invertebrates, following acute exposure. Chronic exposure to Sudbury soils caused adverse effects to plant growth and invertebrate survival and reproduction. The toxicity of Sudbury soils corresponded to the metal concentration gradient, with one exception: The reference soil collected in October was toxic to collembola following acute and chronic exposure. This study evaluated the applicability of the new Environment Canada terrestrial toxicity test methods, developed using agricultural soils, to forest soils and also provided useful data to assess the ecological risk associated with mixtures of metals in soil.


Subject(s)
Metals/analysis , Soil Pollutants/analysis , Animals , Canada , Ecosystem , Environment , Environmental Monitoring , Environmental Pollution , Mutation , Poaceae , Risk , Risk Assessment , Seeds , Soil , Time Factors , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...