Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
AIDS Res Hum Retroviruses ; 30(1): 37-44, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24134221

ABSTRACT

The role of HIV-1-specific antibody responses in HIV disease progression is complex and would benefit from analysis techniques that examine clusterings of responses. Protein microarray platforms facilitate the simultaneous evaluation of numerous protein-specific antibody responses, though excessive data are cumbersome in analyses. Principal components analysis (PCA) reduces data dimensionality by generating fewer composite variables that maximally account for variance in a dataset. To identify clusters of antibody responses involved in disease control, we investigated the association of HIV-1-specific antibody responses by protein microarray, and assessed their association with disease progression using PCA in a nested cohort design. Associations observed among collections of antibody responses paralleled protein-specific responses. At baseline, greater antibody responses to the transmembrane glycoprotein (TM) and reverse transcriptase (RT) were associated with higher viral loads, while responses to the surface glycoprotein (SU), capsid (CA), matrix (MA), and integrase (IN) proteins were associated with lower viral loads. Over 12 months greater antibody responses were associated with smaller decreases in CD4 count (CA, MA, IN), and reduced likelihood of disease progression (CA, IN). PCA and protein microarray analyses highlighted a collection of HIV-specific antibody responses that together were associated with reduced disease progression, and may not have been identified by examining individual antibody responses. This technique may be useful to explore multifaceted host-disease interactions, such as HIV coinfections.


Subject(s)
Disease Progression , HIV Antibodies/blood , Immunoglobulin G/blood , Principal Component Analysis , Protein Array Analysis , Adult , CD4 Lymphocyte Count , Capsid/immunology , Cross-Sectional Studies , Female , HIV Infections/blood , HIV Infections/immunology , HIV Infections/virology , HIV Integrase/immunology , HIV Reverse Transcriptase/immunology , HIV Seropositivity , HIV-1/immunology , Humans , Kenya , Male , Membrane Glycoproteins/immunology , Molecular Sequence Data , Viral Load/immunology , Viral Matrix Proteins/immunology
2.
Antimicrob Agents Chemother ; 57(5): 2272-80, 2013 May.
Article in English | MEDLINE | ID: mdl-23478965

ABSTRACT

High-throughput phenotypic screening against the yeast Saccharomyces cerevisiae revealed a series of triazolopyrimidine-sulfonamide compounds with broad-spectrum antifungal activity, no significant cytotoxicity, and low protein binding. To elucidate the target of this series, we have applied a chemogenomic profiling approach using the S. cerevisiae deletion collection. All compounds of the series yielded highly similar profiles that suggested acetolactate synthase (Ilv2p, which catalyzes the first common step in branched-chain amino acid biosynthesis) as a possible target. The high correlation with profiles of known Ilv2p inhibitors like chlorimuron-ethyl provided further evidence for a similar mechanism of action. Genome-wide mutagenesis in S. cerevisiae identified 13 resistant clones with 3 different mutations in the catalytic subunit of acetolactate synthase that also conferred cross-resistance to established Ilv2p inhibitors. Mapping of the mutations into the published Ilv2p crystal structure outlined the chlorimuron-ethyl binding cavity, and it was possible to dock the triazolopyrimidine-sulfonamide compound into this pocket in silico. However, fungal growth inhibition could be bypassed through supplementation with exogenous branched-chain amino acids or by the addition of serum to the medium in all of the fungal organisms tested except for Aspergillus fumigatus. Thus, these data support the identification of the triazolopyrimidine-sulfonamide compounds as inhibitors of acetolactate synthase but suggest that targeting may be compromised due to the possibility of nutrient bypass in vivo.


Subject(s)
Acetolactate Synthase/antagonists & inhibitors , Antifungal Agents/pharmacology , Pyrimidines/pharmacology , Saccharomyces cerevisiae Proteins/antagonists & inhibitors , Saccharomyces cerevisiae/drug effects , Sulfonamides/pharmacology , Sulfonylurea Compounds/pharmacology , Acetolactate Synthase/chemistry , Acetolactate Synthase/genetics , Acetolactate Synthase/metabolism , Amino Acids, Branched-Chain/metabolism , Amino Acids, Branched-Chain/pharmacology , Antifungal Agents/chemistry , Catalytic Domain/drug effects , High-Throughput Screening Assays , Humans , Microbial Sensitivity Tests , Molecular Docking Simulation , Mutation , Protein Binding , Pyrimidines/chemistry , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Serum/chemistry , Serum/metabolism , Sulfonamides/chemistry , Sulfonylurea Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...