Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(8): 988-991, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38167668

ABSTRACT

Delamination of the electron-transporting polymer N2200 from indium tin oxide (ITO) in aqueous electrolytes is mitigated by modifying ITO with an azide-functionalized phosphonic acid (PA) which, upon UV irradiation, reacts with the polymer. The optical, electrochemical, and spectroelectrochemical properties of N2200 thin films are retained in aqueous and non-aqueous media.

2.
ACS Appl Mater Interfaces ; 15(20): 24387-24398, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37162743

ABSTRACT

Additive engineering is a common strategy to improve the performance and stability of metal halide perovskite through the modulation of crystallization kinetics and passivation of surface defects. However, much of this work has lacked a systematic approach necessary to understand how the functionality and molecular structure of the additives influence perovskite performance and stability. This paper describes the inclusion of low concentrations of 5-aminovaleric acid (5-AVA) and its ammonium acid derivatives, 5-ammoniumvaleric acid iodide (5-AVAI) and 5-ammoniumvaleric acid chloride (5-AVACl), into the precursor inks for methylammonium lead triiodide (MAPbI3) perovskite and highlights the important role of halides in affecting the interactions of additives with perovskite and film properties. The film quality, as determined by X-ray diffraction (XRD) and photoluminescence (PL) spectrophotometry, is shown to improve with the inclusion of all additives, but an increase in annealing time from 5 to 30 min is necessary. We observe an increase in grain size and a decrease in film roughness with the incorporation of 5-AVAI and 5-AVACl with scanning electron microscopy (SEM) and atomic force microscopy (AFM). Critically, X-ray photoelectron spectroscopy (XPS) measurements and density functional theory (DFT) calculations show that 5-AVAI and 5-AVACl preferentially interact with MAPbI3 surfaces via the ammonium functional group, while 5-AVA will interact with either amino or carboxylic acid functional groups. Charge localization analysis shows the surprising result that HCl dissociates from 5-AVACl in vacuum, resulting in the decomposition of the ammonium acid to 5-AVA. We show that device repeatability is improved with the inclusion of all additives and that 5-AVACl increases the power conversion efficiency of devices from 17.61 ± 1.07 to 18.07 ± 0.42%. Finally, we show stability improvements for unencapsulated devices exposed to 50% relative humidity, with devices incorporating 5-AVAI and 5-AVACl exhibiting the greatest improvements.

3.
ACS Omega ; 6(45): 30214-30223, 2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34805656

ABSTRACT

Metal halide perovskites are an emerging class of materials that are promising for low-cost and high-quality next-generation optoelectronic devices. Despite this potential, perovskites suffer from poor thermomechanical and chemical stability that must be overcome before the technology is commercially viable. Key sources of the instabilities in perovskites are ion migration and defects that can be tied to high residual stresses accumulated in the perovskite thin films during processing. This Mini-Review serves as a general overview of residual thin-film stresses, specifically in perovskite solar cells. A brief introduction to the origin of residual stresses in thin films is followed by the effects of these stresses in perovskite films specifically. Mitigation strategies for these stresses are then highlighted, followed by potential avenues of further exploration of residual stresses in perovskite films.

4.
Chem Rev ; 117(9): 6467-6499, 2017 May 10.
Article in English | MEDLINE | ID: mdl-28343389

ABSTRACT

Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

5.
Nano Lett ; 16(2): 1375-80, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26765039

ABSTRACT

This article describes an effect based on the wetting transparency of graphene; the morphology of a metallic film (≤20 nm) when deposited on graphene by evaporation depends strongly on the identity of the substrate supporting the graphene. This control permits the formation of a range of geometries, such as tightly packed nanospheres, nanocrystals, and island-like formations with controllable gaps down to 3 nm. These graphene-supported structures can be transferred to any surface and function as ultrasensitive mechanical signal transducers with high sensitivity and range (at least 4 orders of magnitude of strain) for applications in structural health monitoring, electronic skin, measurement of the contractions of cardiomyocytes, and substrates for surface-enhanced Raman scattering (SERS, including on the tips of optical fibers). These composite films can thus be treated as a platform technology for multimodal sensing. Moreover, they are low profile, mechanically robust, semitransparent and have the potential for reproducible manufacturing over large areas.


Subject(s)
Biosensing Techniques , Graphite/chemistry , Metal Nanoparticles/chemistry , Nanospheres/chemistry , Graphite/therapeutic use , Humans , Mechanical Phenomena , Metal Nanoparticles/therapeutic use , Myocytes, Cardiac/pathology , Nanoparticles/chemistry , Nanospheres/therapeutic use , Spectrum Analysis, Raman , Surface Properties
6.
ACS Appl Mater Interfaces ; 7(41): 23257-64, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26437763

ABSTRACT

Mechanical buckling of thin films on elastomeric substrates is often used to determine the mechanical properties of polymers whose scarcity precludes obtaining a stress-strain curve. Although the modulus and crack-onset strain can readily be obtained by such film-on-elastomer systems, information critical to the development of flexible, stretchable, and mechanically robust electronics (i.e., the range of strains over which the material exhibits elastic behavior) cannot be measured easily. This paper describes a new technique called laser determination of yield point (LADYP), in which a polymer film on an elastic substrate is subjected to cycles of tensile strain that incrementally increase in steps of 1% (i.e., 0% → 1% → 0% → 2% → 0% → 3% → 0%, etc.). The formation of buckles manifests as a diffraction pattern obtained using a laser, and represents the onset of plastic deformation, or the yield point of the polymer. In the series of conjugated polymers poly(3-alkylthiophene), where the alkyl chain is pentyl, hexyl, heptyl, octyl, and dodecyl, the yield point is found to increase with increasing length of the side chain (from approximately 5% to 15% over this range when holding the thickness between ∼200 and 300 nm). A skin-depth effect is observed in which films of <150 nm thickness exhibit substantially greater yield points, up to 40% for poly(3-dodecylthiophene). Along with the tensile modulus obtained by the conventional analysis of the buckling instability, knowledge of the yield point allows one to calculate the modulus of resilience. Combined with knowledge of the crack-onset strain, one can estimate the total energy absorbed by the film (i.e., the modulus of toughness).

7.
Langmuir ; 31(33): 9148-54, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26244597

ABSTRACT

Colloidal particles with asymmetric surface chemistry (Janus particles) have unique bifunctional properties. The size of these particles is an important determinant for their applications in diverse fields from drug delivery to chemical catalysis. The size of Janus particles, with a core surface coated with carboxylate and a partially encapsulating silica shell, depends upon several factors, including the core size and the concentration of carboxylate coating. The role of the carboxylate coating on the Janus particle size is well-understood; however, the role of the core size is not well defined. The role of the carboxylated polystyrene (cPS) core size on the cPS-silica Janus particle morphology (its size and shape) was examined by testing two different silica sizes and five different cPS core sizes. Results from electron microscopy (EM) and dynamic light scattering (DLS) analysis indicate that the composite cPS-silica particle acquires two distinct shapes: (i) when the size of the cPS core is much smaller than the non-cPS silica (b-SiO2) sphere, partially encapsulated Janus particles are formed, and (ii) when the cPS core is larger than or equal to the b-SiO2 sphere, a raspberry-like structure rather than a Janus particle is formed. The cPS-silica Janus particles of ∼100-500 nm size were obtained when the size of the cPS core was much smaller than the non-cPS silica (b-SiO2) sphere. These scalable nanoscale Janus particles will have wide application in a multifunctional delivery platform and catalysis.


Subject(s)
Drug Delivery Systems , Polystyrenes/chemistry , Silicon Dioxide/chemistry , Colloids , Particle Size
8.
Nanotechnology ; 26(4): 045301, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25556527

ABSTRACT

Graphene is expected to play a significant role in future technologies that span a range from consumer electronics, to devices for the conversion and storage of energy, to conformable biomedical devices for healthcare. To realize these applications, however, a low-cost method of synthesizing large areas of high-quality graphene is required. Currently, the only method to generate large-area single-layer graphene that is compatible with roll-to-roll manufacturing destroys approximately 300 kg of copper foil (thickness = 25 µm) for every 1 g of graphene produced. This paper describes a new environmentally benign and scalable process of transferring graphene to flexible substrates. The process is based on the preferential adhesion of certain thin metallic films to graphene; separation of the graphene from the catalytic copper foil is followed by lamination to a flexible target substrate in a process that is compatible with roll-to-roll manufacturing. The copper substrate is indefinitely reusable and the method is substantially greener than the current process that uses relatively large amounts of corrosive etchants to remove the copper. The sheet resistance of the graphene produced by this new process is unoptimized but should be comparable in principle to that produced by the standard method, given the defects observable by Raman spectroscopy and the presence of process-induced cracks. With further improvements, this green, inexpensive synthesis of single-layer graphene could enable applications in flexible, stretchable, and disposable electronics, low-profile and lightweight barrier materials, and in large-area displays and photovoltaic modules.

9.
J Mater Chem B ; 3(25): 4947-4952, 2015 Jul 07.
Article in English | MEDLINE | ID: mdl-32262447

ABSTRACT

The carbon framework common to both organic semiconductors and biological structures suggests that these two classes of materials should be easily integrated. Substantial work, however, will be required to endow synthetic electroactive materials with properties resembling those of biological tissue, which exhibits extreme elasticity, biodegradability, and the capacity for self-repair. This Highlight reviews successful integration of organic semiconductor devices with biological systems, for example, in wearable and implantable health monitors and prosthetic devices. It then points to recent work in the areas of molecularly stretchable electronics, whole devices that can degrade under physiological conditions, and conjugated polymers capable of self-healing, which together suggest the possibility of a future in which organic electronics and biological tissue can interact seamlessly.

10.
ACS Appl Mater Interfaces ; 6(13): 9937-41, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24937196

ABSTRACT

Hollow/porous nanoparticles, including nanocarriers, nanoshells, and mesoporous materials have applications in catalysis, photonics, biosensing, and delivery of theranostic agents. Using a hierarchical template synthesis scheme, we have synthesized a nanocarrier mimicking a golf ball, consisting of (i) solid silica core with a pitted gold surface and (ii) a hollow/porous gold shell without silica. The template consisted of 100 nm polystyrene beads attached to a larger silica core. Selective gold plating of the core followed by removal of the polystyrene beads produced a golf ball-like nanostructure with 100 nm pits. Dissolution of the silica core produced a hollow/porous golf ball-like nanostructure.


Subject(s)
Gold/chemistry , Nanostructures/chemistry , Microscopy, Electron, Scanning
11.
PLoS One ; 8(12): e83939, 2013.
Article in English | MEDLINE | ID: mdl-24358321

ABSTRACT

This paper describes the fabrication of transparent electrodes based on grids of copper microwires using a non-photolithographic process. The process--"abrasion lithography"--takes two forms. In the first implementation (Method I), a water-soluble commodity polymer film is abraded with a sharp tool, coated with a conductive film, and developed by immersion in water. Water dissolves the polymer film and lifts off the conductive film in the unabraded areas. In the second implementation (Method II), the substrate is abraded directly by scratching with a sharp tool (i.e., no polymer film necessary). The abraded regions of the substrate are recessed and roughened. Following deposition of a conductive film, the lower profile and roughened topography in the abraded regions prevents mechanical exfoliation of the conductive film using adhesive tape, and thus the conductive film remains only where the substrate is scratched. As an application, conductive grids exhibit average sheet resistances of 17 Ω sq(-1) and transparencies of 86% are fabricated and used as the anode in organic photovoltaic cells in concert with the conductive polymer, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). Compared to devices in which PEDOT:PSS alone serves as an anode, devices comprising grids of copper/nickel microwires and PEDOT:PSS exhibit lowered series resistance, which manifests in greater fill factor and power conversion efficiency. This simple method of forming micropatterns could find use in applications where cost and environmental impact should be minimized, especially as a potential replacement for the transparent electrode indium tin oxide (ITO) in thin-film electronics over large areas (i.e., solar cells) or as a method of rapid prototyping for laboratory-scale devices.


Subject(s)
Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...