Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 8(4): 3556-66, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24593034

ABSTRACT

This paper describes the fabrication of scanning probes with single metal nanowires (NWs) at the probe tip. The porous-template technique can produce NWs of various kinds of metals, with diameters down to 10-20 nm, which compete with multiwall carbon nanotube diameters. Metal NWs are grown by electrodeposition on the scanning probe tip. One NW can be selected to remain by focused ion beam technique. A variety of metals can be chosen as the tip material. Electric potentials of NWs at the probe tip can be measured. Single NW probes can measure surface topographies, electrode potentials, and their mechanical bending properties.

2.
ACS Nano ; 8(1): 340-51, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24266776

ABSTRACT

This report presents a demonstration and characterization of a nanotubular array of solid oxide fuel cells (SOFCs) made of one-end-closed hollow tube Ni/yttria-stabilized zirconia/Pt membrane electrode assemblies (MEAs). The tubular MEAs are nominally ∼5 µm long and have <500 nm outside diameter with total MEA thickness of nearly 50 nm. Open circuit voltages up to 660 mV (vs air) and power densities up to 1.3 µW cm(-2) were measured at 550 °C using H2 as fuel. The paper also introduces a fabrication methodology primarily based on a template process involving atomic layer deposition and electrodeposition for building the nanotubular MEA architecture as an important step toward achieving high surface area ultrathin SOFCs operating in the intermediate to low-temperature regime. A fabricated nanotubular SOFC theoretically attains a 20-fold increase in the effective surface, while projections indicate the possibility of achieving up to 40-fold.

3.
Nanotechnology ; 19(3): 035710, 2008 Jan 23.
Article in English | MEDLINE | ID: mdl-21817595

ABSTRACT

Electrostatic force microscopy (EFM) is a special design of non-contact atomic force microscopy used for detecting electrostatic interactions between the probe tip and the sample. Its resolution is limited by the finite probe size and the long-range characteristics of electrostatic forces. Therefore, quantitative analysis is crucial to understanding the relationship between the actual local surface potential distribution and the quantities obtained from EFM measurements. To study EFM measurements on bimetallic samples with surface potential inhomogeneities as a special case, we have simulated such measurements using the boundary element method and calculated the force component and force gradient component that would be measured by amplitude modulation (AM) EFM and frequency modulation (FM) EFM, respectively. Such analyses have been performed for inhomogeneities of various shapes and sizes, for different tip-sample separations and tip geometries, for different applied voltages, and for different media (e.g., vacuum or water) in which the experiment is performed. For a sample with a surface potential discontinuity, the FM-EFM resolution expression agrees with the literature; however, the simulation for AM-EFM suggests the existence of an optimal tip radius of curvature in terms of resolution. On the other hand, for samples with strip- and disk-shaped surface potential inhomogeneities, we have obtained quantitative expressions for the detectability size requirements as a function of experimental conditions for both AM- and FM-EFMs, which suggest that a larger tip radius of curvature is moderately favored for detecting the presence of such inhomogeneities.

SELECTION OF CITATIONS
SEARCH DETAIL
...