Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 11876, 2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37481587

ABSTRACT

In today's race to find ways to produce cheap and green hydrogen, the natural hydrogen wells in Bourakebougou offer a promising solution and are a good example of how H2 can be produced in the natural environment. Not only has one well been successfully exploited to generate electricity for the local village, but twenty-four other exploratory boreholes have also demonstrated the presence of natural H2 in the surrounding area. The Bourakebougou H2 field offers a unique opportunity for geoscientists to determine the key characteristics of natural hydrogen reservoirs. This paper presents the coring, logging, and geochemistry studies that were performed to better characterize the nature of the Bourakebougou H2-bearing reservoirs. The shallowest main reservoir, in which there is the highest content of H2, is made of dolomitic carbonate (Neoproterozoic cap carbonate). These carbonates are largely karstified and show a high degree of heterogeneity in porosity (0.21-14.32%). Based on the analysis of the drilling imagery of the carbonated reservoirs, the accumulation of hydrogen occurs in the karst (void) representing a secondary porosity in the rock matrix. Other reservoirs, especially the deepest ones, are porous sandstone rocks with much more homogeneous porosities (4.52-6.37%) compared to the massive carbonates. For the wells analysed, the neutron tool reacted in a specific way when there is the presence of hydrogen. Hence, it stands out as being the primary tool to detect the presence of natural hydrogen beyond simple gas logging. When comparing a H2 reservoir system to classical oil and gas reservoir systems, the results show that the hydrogen reservoir is a dynamic system that is progressively recharged in H2-rich gas at the production timescale.

2.
Anal Bioanal Chem ; 399(6): 2153-65, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21076982

ABSTRACT

IR-femtosecond pulses were used at high repetition rates (up to 10 kHz) to ablate viscous crude oils for the determination of trace elements by ICPMS. A special internal glass cap was fitted into the ablation cell to minimise oil splashes and remove big particles that would be otherwise spread into the cell. Laser ablation in static and dynamic conditions (i.e. the laser beam being moved rapidly at the surface of the sample) was studied together with some fundamental parameters like repetition rate and fluence. Signal sensitivity and stability were found to be strongly affected by repetition rate and fluence, though not in linear manner, and in some circumstances by the laser beam velocity. Sample transport efficiency was found to decrease with increasing repetition rate, probably due to stronger particle agglomeration when increasing the density of primary particles. ICPMS plasma atomisation/ionisation efficiency was also found to be affected to some extent at the highest repetition rates. Moderate repetition rate (1 kHz), high fluence (24 J cm(-2)) and fast scanning velocity (100 mm s(-1)) were preferred taking into account signal intensity and stability. Sample transport elemental fractionation was also evidenced, particularly as regards to carbon due to volatilisation of volatile organic species. Matrix effect occurring when comparing the ablation of transparent (base oil) and opaque (crude oil) samples could not be completely suppressed by the use of IR femtosecond pulses, requiring a matrix matching or a standard addition calibration approach. This approach provided good accuracy and very low detection limits in the crude oil, in the range of ng g(-1).

SELECTION OF CITATIONS
SEARCH DETAIL
...