Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
Res Sq ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38558990

ABSTRACT

Interactions of light-sensitive drugs and materials with Cerenkov radiation-emitting radiopharmaceuticals generate cytotoxic reactive oxygen species (ROS) to inhibit localized and disseminated cancer progression, but the cell death mechanisms underlying this radionuclide stimulated dynamic therapy (RaST) remain elusive. Using ROS-regenerative nanophotosensitizers coated with a tumor-targeting transferrin-titanocene complex (TiO2-TC-Tf) and radiolabeled 2-fluorodeoxyglucose (18FDG), we found that adherent dying cells maintained metabolic activity with increased membrane permeabilization. Mechanistic assessment of these cells revealed that RaST activated the expression of RIPK-1 and RIPK-3, which mediate necroptosis cell death. Subsequent recruitment of the nuclear factors kappa B and the executioner mixed lineage kinase domain-like pseudo kinase (MLKL) triggered plasma membrane permeabilization and pore formation, respectively, followed by the release of cytokines and immunogenic damage-associated molecular patterns (DAMPs). In immune-deficient breast cancer models with adequate stroma and growth factors that recapitulate the human tumor microenvironment, RaST failed to inhibit tumor progression and the ensuing lung metastasis. A similar aggressive tumor model in immunocompetent mice responded to RaST, achieving a remarkable partial response (PR) and complete response (CR) with no evidence of lung metastasis, suggesting active immune system engagement. RaST recruited antitumor CD11b+, CD11c+, and CD8b+ effector immune cells after initiating dual immunogenic apoptosis and necroptosis cell death pathways in responding tumors in vivo. Over time, cancer cells upregulated the expression of negative immune regulating cytokine (TGF-ß) and soluble immune checkpoints (sICP) to challenge RaST effect in the CR mice. Using a signal-amplifying cancer-imaging agent, LS301, we identified latent minimal residual disseminated tumors in the lymph nodes (LNs) of the CR group. Despite increased protumor immunogens in the CR mice, RaST prevented cancer relapse and metastasis through dynamic redistribution of ROS-regenerative TiO2 from bones at the early treatment stage to the spleen and LNs, maintaining active immunity against cancer progression and migration. This study reveals the immune-mechanistic underpinnings of RaST-mediated antitumor immune response and highlights immunogenic reprogramming of tumors in response to RaST. Overcoming apoptosis resistance through complementary necroptosis activation paves the way for strategic drug combinations to improve cancer treatment.

2.
Mol Imaging Biol ; 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480650

ABSTRACT

PURPOSE: Multiple myeloma (MM) affects over 35,000 patients each year in the US. There remains a need for versatile Positron Emission Tomography (PET) tracers for the detection, accurate staging, and monitoring of treatment response of MM that have optimal specificity and translational attributes. CD38 is uniformly overexpressed in MM and thus represents an ideal target to develop CD38-targeted small molecule PET radiopharmaceuticals to address these challenges. PROCEDURES: Using phage display peptide libraries and pioneering algorithms, we identified novel CD38 specific peptides. Imaging bioconjugates were synthesized using solid phase peptide chemistry, and systematically analyzed in vitro and in vivo in relevant MM systems. RESULTS: The CD38-targeted bioconjugates were radiolabeled with copper-64 (64Cu) with100% radiochemical purity and an average specific activity of 3.3 - 6.6 MBq/nmol. The analog NODAGA-PEG4-SL022-GGS (SL022: Thr-His-Tyr-Pro-Ile-Val-Ile) had a Kd of 7.55 ± 0.291 nM and was chosen as the lead candidate. 64Cu-NODAGA-PEG4-SL022-GGS demonstrated high binding affinity to CD38 expressing human myeloma MM.1S-CBR-GFP-WT cells, which was blocked by the non-radiolabeled version of the peptide analog and anti-CD38 clinical antibodies, daratumumab and isatuximab, by 58%, 73%, and 78%, respectively. The CD38 positive MM.1S-CBR-GFP-WT cells had > 68% enhanced cellular binding when compared to MM.1S-CBR-GFP-KO cells devoid of CD38. Furthermore, our new CD38-targeted radiopharmaceutical allowed visualization of tumors located in marrow rich bones, remaining there for up to 4 h. Clearance from non-target organs occurred within 60 min. Quantitative PET data from a murine disseminated tumor model showed significantly higher accumulation in the bones of tumor-bearing animals compared to tumor-naïve animals (SUVmax 2.06 ± 0.4 versus 1.24 ± 0.4, P = 0.02). Independently, tumor uptake of the target compound was significantly higher (P = 0.003) compared to the scrambled peptide, 64Cu-NODAGA-PEG4-SL041-GGS (SL041: Thr-Tyr-His-Ile-Pro-Ile-Val). The subcutaneous MM model demonstrated significantly higher accumulation in tumors compared to muscle at 1 and 4 h after tracer administration (SUVmax 0.8 ± 0.2 and 0.14 ± 0.04, P = 0.04 at 1 h; SUVmax 0.89 ± 0.01 and 0.09 ± 0.01, P = 0.0002 at 4 h). CONCLUSIONS: The novel CD38-targeted, radiolabeled bioconjugates were specific and allowed visualization of MM, providing a starting point for the clinical translation of such tracers for the detection of MM.

3.
Cancer Res ; 83(17): 2839-2857, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37272756

ABSTRACT

In metastatic breast cancer, HER2-activating mutations frequently co-occur with mutations in PIK3CA, TP53, or CDH1. Of these co-occurring mutations, HER2 and PIK3CA are the most commonly comutated gene pair, with approximately 40% of HER2-mutated breast cancers also having activating mutations in PIK3CA. To study the effects of co-occurring HER2 and PIK3CA mutations, we generated genetically engineered mice with the HER2V777L; PIK3CAH1047R transgenes (HP mice) and studied the resulting breast cancers both in vivo as well as ex vivo using cancer organoids. HP breast cancers showed accelerated tumor formation in vivo and increased invasion and migration in in vitro assays. HP breast cancer cells were resistant to the pan-HER tyrosine kinase inhibitor, neratinib, but were effectively treated with neratinib plus the HER2-targeted antibody-drug conjugate trastuzumab deruxtecan. Proteomic and RNA-seq analysis of HP breast cancers identified increased gene expression of cyclin D1 and p21WAF1/Cip1 and changes in cell-cycle markers. Combining neratinib with CDK4/6 inhibitors was another effective strategy for treating HP breast cancers, with neratinib plus palbociclib showing a statistically significant reduction in development of mouse HP tumors as compared to either drug alone. The efficacy of both the neratinib plus trastuzumab deruxtecan and neratinib plus palbociclib combinations was validated using a human breast cancer patient-derived xenograft with very similar HER2 and PIK3CA mutations to the HP mice. Further, these two drug combinations effectively treated spontaneous lung metastasis in syngeneic mice transplanted with HP breast cancer organoids. This study provides valuable preclinical data to support the ongoing phase 1 clinical trials of these drug combinations in breast cancer. SIGNIFICANCE: In HER2-mutated breast cancer, PIK3CA mutation activates p21-CDK4/6-cyclin D1 signaling to drive resistance to HER2-targeted therapies, which can be overcome using CDK4/6 inhibitors.


Subject(s)
Breast Neoplasms , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Transformation, Neoplastic , Class I Phosphatidylinositol 3-Kinases/genetics , Cyclin D1/genetics , Cyclin-Dependent Kinase 4/genetics , Drug Resistance, Neoplasm/genetics , Mutation , Proteomics , Receptor, ErbB-2/metabolism
4.
Blood ; 141(8): 945-950, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36477272

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for both malignant and nonmalignant hematologic disorders. However, graft-versus-host disease (GVHD) and malignant relapse limit its therapeutic success. We previously demonstrated that the blockade of interferon-gamma receptor (IFNGR) signaling in donor T cells resulted in a reduction in GVHD while preserving graft-versus-leukemia (GVL) effects. However, the underlying molecular mechanisms remain inconclusive. In this study, we found that S100A9 is a novel GVHD suppressor upregulated when IFNGR is blocked in T cells. Both Ifngr1-/- and S100a9-overexpressing T cells significantly reduced GVHD without compromising GVL, altering donor T-cell trafficking to GVHD target organs in our mouse model of allo-HSCT. In addition, in vivo administration of recombinant murine S100A9 proteins prolongs the overall survival of recipient mice. Furthermore, in vivo administration of anti-human IFNGRα neutralizing antibody (αhGR-Nab) significantly upregulates the expression of S100A9 in human T cells and improved GVHD in our mouse model of xenogeneic human peripheral blood mononuclear cell transplantation. Consistent with S100a9-overexpressing T cells in our allo-HSCT model, αhGR-Nab reduced human T-cell trafficking to the GVHD target organs. Taken together, S100A9, a downstream molecule suppressed by IFNGR signaling, functions as a novel GVHD suppressor without compromising GVL.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Humans , Animals , Transplantation, Homologous , Leukocytes, Mononuclear/metabolism , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocytes , Recombinant Proteins/metabolism , Graft vs Leukemia Effect , Calgranulin B
5.
Leukemia ; 36(6): 1625-1634, 2022 06.
Article in English | MEDLINE | ID: mdl-35422095

ABSTRACT

Despite improvement in treatment options for myeloma patients, including targeted immunotherapies, multiple myeloma remains a mostly incurable malignancy. High CS1 (SLAMF7) expression on myeloma cells and limited expression on normal cells makes it a promising target for CAR-T therapy. The CS1 protein has two extracellular domains - the distal Variable (V) domain and the proximal Constant 2 (C2) domain. We generated and tested CS1-CAR-T targeting the V domain of CS1 (Luc90-CS1-CAR-T) and demonstrated anti-myeloma killing in vitro and in vivo using two mouse models. Since fratricide of CD8 + cells occurred during production, we generated fratricide resistant CS1 deficient Luc90- CS1- CAR-T (ΔCS1-Luc90- CS1- CAR-T). This led to protection of CD8 + cells in the CAR-T cultures, but had no impact on efficacy. Our data demonstrate targeting the distal V domain of CS1 could be an effective CAR-T treatment for myeloma patients and deletion of CS1 in clinical production did not provide an added benefit using in vivo immunodeficient NSG preclinical models.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Animals , CD8-Positive T-Lymphocytes/pathology , Humans , Immunotherapy, Adoptive , Mice , Multiple Myeloma/pathology , Receptors, Chimeric Antigen/metabolism , Signaling Lymphocytic Activation Molecule Family/metabolism , T-Lymphocytes/metabolism , Tumor Burden , Xenograft Model Antitumor Assays
6.
Theranostics ; 11(16): 7735-7754, 2021.
Article in English | MEDLINE | ID: mdl-34335961

ABSTRACT

Rationale: Multiple myeloma (MM) is a multifocal malignancy of bone marrow plasma cells, characterized by vicious cycles of remission and relapse that eventually culminate in death. The disease remains mostly incurable largely due to the complex interactions between the bone microenvironment (BME) and MM cells (MMC). In the "vicious cycle" of bone disease, abnormal activation of osteoclasts (OCs) by MMC causes severe osteolysis, promotes immune evasion, and stimulates the growth of MMC. Disrupting these cancer-stroma interactions would enhance treatment response. Methods: To disrupt this cycle, we orthogonally targeted nanomicelles (NM) loaded with non-therapeutic doses of a photosensitizer, titanocene (TC), to VLA-4 (α4ß1, CD49d/CD29) expressing MMC (MM1.S) and αvß3 (CD51/CD61) expressing OC. Concurrently, a non-lethal dose of a radiopharmaceutical, 18F-fluorodeoxyglucose ([18F]FDG) administered systemically interacted with TC (radionuclide stimulated therapy, RaST) to generate cytotoxic reactive oxygen species (ROS). The in vitro and in vivo effects of RaST were characterized in MM1.S cell line, as well as in xenograft and isograft MM animal models. Results: Our data revealed that RaST induced non-enzymatic hydroperoxidation of cellular lipids culminating in mitochondrial dysfunction, DNA fragmentation, and caspase-dependent apoptosis of MMC using VLA-4 avid TC-NMs. RaST upregulated the expression of BAX, Bcl-2, and p53, highlighting the induction of apoptosis via the BAK-independent pathway. The enhancement of multicopper oxidase enzyme F5 expression, which inhibits lipid hydroperoxidation and Fenton reaction, was not sufficient to overcome RaST-induced increase in the accumulation of irreversible function-perturbing α,ß-aldehydes that exerted significant and long-lasting damage to both DNA and proteins. In vivo, either VLA-4-TC-NM or αvß3-TC-NMs RaST induced a significant therapeutic effect on immunocompromised but not immunocompetent MM-bearing mouse models. Combined treatment with both VLA-4-TC-NM and αvß3-TC-NMs synergistically inhibited osteolysis, reduced tumor burden, and prevented rapid relapse in both in vivo models of MM. Conclusions: By targeting MM and bone cells simultaneously, combination RaST suppressed MM disease progression through a multi-prong action on the vicious cycle of bone cancer. Instead of using the standard multidrug approach, our work reveals a unique photophysical treatment paradigm that uses nontoxic doses of a single light-sensitive drug directed orthogonally to cancer and bone cells, followed by radionuclide-stimulated generation of ROS to inhibit tumor progression and minimize osteolysis in both immunocompetent murine and immunocompromised human MM models.


Subject(s)
Multiple Myeloma/drug therapy , Organometallic Compounds/pharmacology , Osteoclasts/metabolism , Animals , Apoptosis/drug effects , Bone Marrow/metabolism , Bone Neoplasms , Bone and Bones/metabolism , Cell Death/drug effects , Cell Line, Tumor , Fluorodeoxyglucose F18/pharmacology , Humans , Integrin alpha Chains/drug effects , Integrin alpha Chains/metabolism , Mice , Multiple Myeloma/metabolism , Organometallic Compounds/metabolism , Osteoclasts/drug effects , Osteolysis/pathology , Radioisotopes/pharmacology , Radiopharmaceuticals/therapeutic use , Reactive Oxygen Species , Signal Transduction/drug effects , Theranostic Nanomedicine/methods , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
7.
ACS Nano ; 14(4): 4255-4264, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32223222

ABSTRACT

Rapid liver and spleen opsonization of systemically administered nanoparticles (NPs) for in vivo applications remains the Achilles' heel of nanomedicine, allowing only a small fraction of the materials to reach the intended target tissue. Although focusing on diseases that reside in the natural disposal organs for nanoparticles is a viable option, it limits the plurality of lesions that could benefit from nanomedical interventions. Here we designed a theranostic nanoplatform consisting of reactive oxygen (ROS)-generating titanium dioxide (TiO2) NPs, coated with a tumor-targeting agent, transferrin (Tf), and radiolabeled with a radionuclide (89Zr) for targeting bone marrow, imaging the distribution of the NPs, and stimulating ROS generation for cell killing. Radiolabeling of TiO2 NPs with 89Zr afforded thermodynamically and kinetically stable chelate-free 89Zr-TiO2-Tf NPs without altering the NP morphology. Treatment of multiple myeloma (MM) cells, a disease of plasma cells originating in the bone marrow, with 89Zr-TiO2-Tf generated cytotoxic ROS to induce cancer cell killing via the apoptosis pathway. Positron emission tomography/X-ray computed tomography (PET/CT) imaging and tissue biodistribution studies revealed that in vivo administration of 89Zr-TiO2-Tf in mice leveraged the osteotropic effect of 89Zr to selectively localize about 70% of the injected radioactivity in mouse bone tissue. A combination of small-animal PET/CT imaging of NP distribution and bioluminescence imaging of cancer progression showed that a single-dose 89Zr-TiO2-Tf treatment in a disseminated MM mouse model completely inhibited cancer growth at euthanasia of untreated mice and at least doubled the survival of treated mice. Treatment of the mice with cold Zr-TiO2-Tf, 89Zr-oxalate, or 89Zr-Tf had no therapeutic benefit compared to untreated controls. This study reveals an effective radionuclide sensitizing nanophototherapy paradigm for the treatment of MM and possibly other bone-associated malignancies.


Subject(s)
Multiple Myeloma , Animals , Mice , Multiple Myeloma/diagnostic imaging , Multiple Myeloma/drug therapy , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radioisotopes , Tissue Distribution , Zirconium
8.
J Biomed Opt ; 25(2): 1-13, 2020 02.
Article in English | MEDLINE | ID: mdl-32112540

ABSTRACT

SIGNIFICANCE: The blood-brain barrier (BBB) is a major obstacle to detecting and treating brain tumors. Overcoming this challenge will facilitate the early and accurate detection of brain lesions and guide surgical resection of tumors. AIM: We generated an orthotopic brain tumor model that simulates the pathophysiology of gliomas at early stages; determine the BBB integrity and breakdown over the time course of tumor progression using generic and cancer-targeted near-infrared (NIR) fluorescent molecular probes. APPROACH: We developed an intracranial tumor xenograft model that rapidly reestablished BBB integrity and monitored tumor progression by bioluminescence imaging. Sham control mice were injected with phosphate-buffered saline only. Fluorescence molecular tomography (FMT) was used to quantify the uptake of tumor-targeted and passive NIR fluorescent imaging agents in orthotopic glioma (U87-GL-GFP PDE7B H217Q cells) tumor model. Cancer-induced and transient (with focused ultrasound, FUS) disruption of BBB integrity was monitored with NIR fluorescent dyes. RESULTS: Stereotactic injection of 50,000 cells into mouse brain allowed rapid reestablishment of BBB integrity within a week, as determined by the inability of both tumor-targeted and generic NIR imaging agents to extravasate into the brain. Tumor-induced BBB disruption was observed 7 weeks after tumor implantation. FUS achieved a similar effect at any time point after reestablishing BBB integrity. While tumor uptake and retention of the passive NIR dye, indocyanine green, was negligible, both actively tumor-targeting agents exhibited selective accumulation in the tumor region. The tumor-targeting molecular probe that clears rapidly from nontumor brain tissue exhibits higher contrast than the analogous vascular-targeting agent and helps delineate tumors from sham control. CONCLUSIONS: We highlight the utility of FMT imaging for longitudinal assessment of brain tumors and the interplay between the stages of BBB disruption and molecular probe retention in tumors, with potential application to other neurological diseases.


Subject(s)
Blood-Brain Barrier/physiology , Brain Neoplasms/diagnostic imaging , Glioma/diagnostic imaging , Microscopy, Fluorescence/methods , Tomography, Optical/methods , Animals , Brain Neoplasms/pathology , Coloring Agents/administration & dosage , Contrast Media , Disease Models, Animal , Female , Glioma/pathology , Green Fluorescent Proteins/administration & dosage , Image Processing, Computer-Assisted/methods , Indocyanine Green/administration & dosage , Luminescent Agents/administration & dosage , Mice , Mice, Nude , Neoplasm Transplantation , Transplantation, Heterologous
9.
Nanomedicine (Lond) ; 14(2): 169-182, 2019 01.
Article in English | MEDLINE | ID: mdl-30730790

ABSTRACT

AIM: CaCO3 nanoparticles (nano-CaCO3) can neutralize the acidic pHe of solid tumors, but the lack of intrinsic imaging signal precludes noninvasive monitoring of pH-perturbation in tumor microenvironment. We aim to develop a theranostic version of nano-CaCO3 to noninvasively monitor pH modulation and subsequent tumor response. MATERIALS & METHODS: We synthesized ferromagnetic core coated with CaCO3 (magnetite CaCO3). Magnetic resonance imaging (MRI) was used to determine the biodistribution and pH modulation using murine fibrosarcoma and breast cancer models. RESULTS: Magnetite CaCO3-MRI imaging showed that nano-CaCO3 rapidly raised tumor pHe, followed by excessive tumor-associated acid production after its clearance. Continuous nano-CaCO3 infusion could inhibit metastasis. CONCLUSION: Nano-CaCO3 exposure induces tumor metabolic reprogramming that could account for the failure of previous intermittent pH-modulation strategies to achieve sustainable therapeutic effect.


Subject(s)
Calcium Carbonate , Nanoparticles/chemistry , Neoplasm Metastasis/drug therapy , Tumor Microenvironment/drug effects , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Calcium Carbonate/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Female , Fibrosarcoma/drug therapy , Fibrosarcoma/pathology , Humans , Male , Mice , Particle Size , Theranostic Nanomedicine
10.
Mol Pharm ; 16(2): 552-560, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30608705

ABSTRACT

Nanogels are attractive biocompatible materials that enable local delivery of multiple drugs. In this study, we demonstrated that 3D printing technology could be used to precisely construct nanogel discs carrying paclitaxel and rapamycin. 3D-printed nanogel disc rounds (12 mm diameter × 1 mm thickness) carrying paclitaxel and rapamycin evaded premature gelation during storage and the initial burst release of the drugs in the dissolution medium. In vivo 3D-printed nanogel discs permitted successful intraperitoneal delivery of paclitaxel and rapamycin in ES-2-luc ovarian-cancer-bearing xenograft mice. They were also shown to be therapeutically effective and capable of preventing postsurgical peritoneal adhesions in the treated xenograft mice.


Subject(s)
Ovarian Neoplasms/drug therapy , Poloxamer/chemistry , Printing, Three-Dimensional , Animals , Antibiotics, Antineoplastic/therapeutic use , Female , Humans , Mice , Paclitaxel/therapeutic use , Sirolimus/therapeutic use , Xenograft Model Antitumor Assays
11.
Leukemia ; 32(9): 1970-1983, 2018 09.
Article in English | MEDLINE | ID: mdl-29483708

ABSTRACT

T cell malignancies represent a group of hematologic cancers with high rates of relapse and mortality in patients for whom no effective targeted therapies exist. The shared expression of target antigens between chimeric antigen receptor (CAR) T cells and malignant T cells has limited the development of CAR-T because of unintended CAR-T fratricide and an inability to harvest sufficient autologous T cells. Here, we describe a fratricide-resistant "off-the-shelf" CAR-T (or UCART7) that targets CD7+ T cell malignancies and, through CRISPR/Cas9 gene editing, lacks both CD7 and T cell receptor alpha chain (TRAC) expression. UCART7 demonstrates efficacy against human T cell acute lymphoblastic leukemia (T-ALL) cell lines and primary T-ALL in vitro and in vivo without the induction of xenogeneic GvHD. Fratricide-resistant, allo-tolerant "off-the-shelf" CAR-T represents a strategy for treatment of relapsed and refractory T-ALL and non-Hodgkin's T cell lymphoma without a requirement for autologous T cells.


Subject(s)
Immunotherapy, Adoptive , Leukemia, T-Cell/immunology , Leukemia, T-Cell/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/immunology , Animals , Antigens, CD7/genetics , Antigens, CD7/immunology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , CRISPR-Cas Systems , Cytotoxicity, Immunologic , Disease Models, Animal , Female , Gene Deletion , Gene Editing , Gene Order , Genetic Vectors/genetics , Humans , Immunotherapy, Adoptive/methods , Leukemia, T-Cell/genetics , Leukemia, T-Cell/therapy , Male , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Chimeric Antigen/genetics , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
12.
Nat Commun ; 9(1): 275, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348537

ABSTRACT

Most cancer patients succumb to disseminated disease because conventional systemic therapies lack spatiotemporal control of their toxic effects in vivo, particularly in a complicated milieu such as bone marrow where progenitor stem cells reside. Here, we demonstrate the treatment of disseminated cancer by photoactivatable drugs using radiopharmaceuticals. An orthogonal-targeting strategy and a contact-facilitated nanomicelle technology enabled highly selective delivery and co-localization of titanocene and radiolabelled fluorodeoxyglucose in disseminated multiple myeloma cells. Selective ablation of the cancer cells was achieved without significant off-target toxicity to the resident stem cells. Genomic, proteomic and multimodal imaging analyses revealed that the downregulation of CD49d, one of the dimeric protein targets of the nanomicelles, caused therapy resistance in small clusters of cancer cells. Similar treatment of a highly metastatic breast cancer model using human serum albumin-titanocene formulation significantly inhibited cancer growth. This strategy expands the use of phototherapy for treating previously inaccessible metastatic disease.


Subject(s)
Mammary Neoplasms, Experimental/therapy , Multiple Myeloma/therapy , Organometallic Compounds/administration & dosage , Photochemotherapy , Radiopharmaceuticals/administration & dosage , Animals , Cell Line , Drug Resistance, Neoplasm , Female , Integrin alpha4beta1 , Mice, Inbred C57BL , Mice, SCID , Micelles , Molecular Targeted Therapy , Nanoparticles , Rats , Serum Albumin, Human , Xenograft Model Antitumor Assays
13.
J Biophotonics ; 11(4): e201700232, 2018 04.
Article in English | MEDLINE | ID: mdl-29206348

ABSTRACT

Rapid detection of multifocal cancer without the use of complex imaging schemes will improve treatment outcomes. In this study, dynamic fluorescence imaging was used to harness differences in the perfusion kinetics of near-infrared (NIR) fluorescent dyes to visualize structural characteristics of different tissues. Using the hydrophobic nontumor-selective NIR dye cypate, and the hydrophilic dye LS288, a high tumor-to-background contrast was achieved, allowing the delineation of diverse tissue types while maintaining short imaging times. By clustering tissue types with similar perfusion properties, the dynamic fluorescence imaging method identified secondary tumor locations when only the primary tumor position was known, with a respective sensitivity and specificity of 0.97 and 0.75 for cypate, and 0.85 and 0.81 for LS288. Histological analysis suggests that the vasculature in the connective tissue that directly surrounds the tumor was a major factor for tumor identification through perfusion imaging. Although the hydrophobic dye showed higher specificity than the hydrophilic probe, use of other dyes with different physical and biological properties could further improve the accuracy of the dynamic imaging platform to identify multifocal tumors for potential use in real-time intraoperative procedures.


Subject(s)
Fibrosarcoma/diagnostic imaging , Infrared Rays , Molecular Probes/metabolism , Optical Imaging , Perfusion Imaging , Algorithms , Animals , Cell Line, Tumor , Cell Transformation, Neoplastic , Fibrosarcoma/metabolism , Fibrosarcoma/pathology , Humans , Image Processing, Computer-Assisted , Mice
14.
Oncotarget ; 8(7): 12272-12289, 2017 Feb 14.
Article in English | MEDLINE | ID: mdl-28103576

ABSTRACT

While modern therapies for metastatic prostate cancer (PCa) have improved survival they are associated with an increasingly prevalent entity, aggressive variant PCa (AVPCa), lacking androgen receptor (AR) expression, enriched for cancer stem cells (CSCs), and evidencing epithelial-mesenchymal plasticity with a varying extent of neuroendocrine transdifferentiation. Parallel work revealed that endothelial cells (ECs) create a perivascular CSC niche mediated by juxtacrine and membrane tethered signaling. There is increasing interest in pharmacological metastatic niche targeting, however, targeted access has been impossible. Here, we discovered that the Gleason 7 derived, androgen receptor negative, IGR-CaP1 cell line possessed some but not all of the molecular features of AVPCa. Intracardiac injection into NOD/SCID/IL2Rg -/- (NSG) mice produced a completely penetrant bone, liver, adrenal, and brain metastatic phenotype; noninvasively and histologically detectable at 2 weeks, and necessitating sacrifice 4-5 weeks post injection. Bone metastases were osteoblastic, and osteolytic. IGR-CaP1 cells expressed the neuroendocrine marker synaptophysin, near equivalent levels of vimentin and e-cadherin, all of the EMT transcription factors, and activation of NOTCH and WNT pathways. In parallel, we created a new triple-targeted adenoviral vector containing a fiber knob RGD peptide, a hexon mutation, and an EC specific ROBO4 promoter (Ad.RGD.H5/3.ROBO4). This vector was expressed in metastatic microvessels tightly juxtaposed to IGR-CaP1 cells in bone and visceral niches. Thus, the combination of IGR-CaP1 cells and NSG mice produces a completely penetrant metastatic PCa model emulating end-stage human disease. In addition, the metastatic niche access provided by our novel Ad vector could be therapeutically leveraged for future disease control or cure.


Subject(s)
Adenoviridae/genetics , Bone Neoplasms/genetics , Endothelial Cells/metabolism , Neoplastic Stem Cells/metabolism , Prostatic Neoplasms/genetics , Viscera/metabolism , Animals , Blotting, Western , Bone Neoplasms/secondary , Cadherins , Cell Line, Tumor , Disease Models, Animal , Genetic Vectors/genetics , Humans , Immunohistochemistry , Interleukin Receptor Common gamma Subunit/deficiency , Interleukin Receptor Common gamma Subunit/genetics , Male , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplastic Stem Cells/pathology , Prostatic Neoplasms/pathology , Stem Cell Niche , Transplantation, Heterologous , Vimentin/metabolism , Viscera/pathology
15.
Sci Rep ; 6: 35636, 2016 11 02.
Article in English | MEDLINE | ID: mdl-27805057

ABSTRACT

Fluselenamyl (5), a novel planar benzoselenazole shows traits desirable of enabling noninvasive imaging of Aß pathophysiology in vivo; labeling of both diffuse (an earlier manifestation of neuritic plaques) and fibrillar plaques in Alzheimer's disease (AD) brain sections, and remarkable specificity for mapping Aß compared with biomarker proteins of other neurodegenerative diseases. Employing AD homogenates, [18F]-9, a PET tracer demonstrates superior (2-10 fold higher) binding affinity than approved FDA tracers, while also indicating binding to high affinity site on Aß plaques. Pharmacokinetic studies indicate high initial influx of [18F]-9 in normal mice brains accompanied by rapid clearance in the absence of targeted plaques. Following incubation in human serum, [18F]-9 indicates presence of parental compound up to 3h thus indicating its stability. Furthermore, in vitro autoradiography studies of [18F]-9 with AD brain tissue sections and ex vivo autoradiography studies in transgenic mouse brain sections show cortical Aß binding, and a fair correlation with Aß immunostaining. Finally, multiphoton- and microPET/CT imaging indicate its ability to penetrate brain and label parenchymal plaques in transgenic mice. Following further validation of its performance in other AD rodent models and nonhuman primates, Fluselenamyl could offer a platform technology for monitoring earliest stages of Aß pathophysiology in vivo.


Subject(s)
Alzheimer Disease/diagnosis , Alzheimer Disease/physiopathology , Brain/diagnostic imaging , Organoselenium Compounds/chemistry , Plaque, Amyloid/diagnostic imaging , Positron Emission Tomography Computed Tomography/methods , Alzheimer Disease/diagnostic imaging , Animals , Autoradiography/methods , Binding Sites/physiology , Biomarkers/cerebrospinal fluid , Mice , Mice, Transgenic , Organoselenium Compounds/chemical synthesis , Protein Binding/physiology
16.
Tomography ; 2(1): 17-25, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27200417

ABSTRACT

Planar fluorescence imaging is widely used in biological research because of its simplicity, use of non-ionizing radiation, and high-throughput data acquisition. In cancer research, where small animal models are used to study the in vivo effects of cancer therapeutics, the output of interest is often the tumor volume. Unfortunately, inaccuracies in determining tumor volume from surface-weighted projection fluorescence images undermine the data, and alternative physical or conventional tomographic approaches are prone to error or are tedious for most laboratories. Here, we report a method that uses a priori knowledge of a tumor xenograft model, a tumor-targeting near infrared probe, and a custom-developed image analysis planar view tumor volume algorithm (PV-TVA) to estimate tumor volume from planar fluorescence images. Our algorithm processes images obtained using near infrared light for improving imaging depth in tissue in comparison with light in the visible spectrum. We benchmarked our results against the actual tumor volume obtained from a standard water volume displacement method. Compared with a caliper-based method that has an average deviation from an actual volume of 18% (204.34 ± 115.35 mm3), our PV-TVA average deviation from the actual volume was 9% (97.24 ± 70.45 mm3; P < .001). Using a normalization-based analysis, we found that bioluminescence imaging and PV-TVA average deviations from actual volume were 36% and 10%, respectively. The improved accuracy of tumor volume assessment from planar fluorescence images, rapid data analysis, and the ease of archiving images for subsequent retrieval and analysis potentially lend our PV-TVA method to diverse cancer imaging applications.

17.
Nucl Med Biol ; 43(3): 191-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26924499

ABSTRACT

INTRODUCTION: For stratification of chemotherapeutic choices, radiopharmaceuticals capable of imaging breast cancer resistance protein (BCRP/ABCG2)-mediated functional transport are desired. To accomplish this objective, Galmydar, a fluorescent and moderately hydrophobic Ga(III) cationic complex and its (67/68)Ga-radiolabeled counterparts were interrogated in HEK293 cells stably transfected with BCRP and their WT counterparts transfected with empty vector. Additionally, the sensitivity and specificity of (68)Ga-Galmydar to evaluate functional expression of BCRP at the blood-brain barrier (BBB) was investigated in gene-knockout mdr1a/1b(-/-) (double knockout, dKO) and mdr1a/1b(-/-)ABCG2(-/-) (triple knockout, tKO) mouse models. METHODS: For radiotracer uptake assays and live cell fluorescence imaging, either (67)Ga-Galmydar or its unlabeled counterpart was incubated in HEK293 cells transfected with BCRP (HEK293/BCRP) and their WT counterparts at 37°C under a continuous flux of CO2 (5%) in the presence or absence of Ko143, a potent BCRP antagonist, and cellular uptake was measured to assess the sensitivity of Galmydar to probe BCRP-mediated functional transport activity in cellulo. For assessing the potential of Galmydar to enable diagnostic imaging of targeted tissues in vivo, the (67)Ga-radiolabeled counterpart was incubated in either human serum albumin or human serum at 37°C and the percentage of unbound (67)Ga-Galmydar was determined. To evaluate the sensitivity of (68)Ga-Galmydar for molecular imaging of BCRP-mediated efflux activity in vivo, microPET/CT brain imaging was performed in dKO and tKO mice and their age-matched WT counterparts, 60min post-intravenous injection. RESULTS: (67)Ga-Galmydar shows uptake profiles in HEK293 cells inversely proportional to BCRP expression, and antagonist (Ko143) induced accumulation in HEK293/BCRP cells, thus indicating target sensitivity and specificity. Furthermore, employing the fluorescent characteristics of Galmydar, optical imaging in HEK293/BCRP cells shows an excellent correlation with the radiotracer cellular accumulation data. (67)Ga-Galmydar shows > 85% unbound fraction and presence of parental compound in human serum. Finally, microPET/CT imaging shows higher retention of (68)Ga-Galmydar in brains of dKO and tKO mice compared to their age-matched WT counterparts, 60min post-intravenous tail-vein injection. CONCLUSIONS: Combined data indicate that Galmydar could provide a template scaffold for development of a PET tracer for imaging BCRP-mediated functional transport activity in vivo.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Coordination Complexes/metabolism , Fluorescent Dyes/metabolism , Gallium Radioisotopes , Neoplasm Proteins/metabolism , Organometallic Compounds/metabolism , Animals , Biological Transport , HEK293 Cells , Humans , Male , Mice , Optical Imaging , Positron-Emission Tomography , Radioactive Tracers , Tomography, X-Ray Computed
18.
EJNMMI Res ; 5(1): 112, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26061601

ABSTRACT

BACKGROUND: PET radiopharmaceuticals capable of imaging ß-amyloid (Aß) plaque burden in the brain could offer highly valuable diagnostic tools for clinical studies of Alzheimer's disease. To further supplement existing armamentarium of FDA-approved agents as well as those under development, and to correlate multiphoton-imaging data reported earlier, herein, we describe preclinical validation of a PET tracer. METHODS: A novel PET radiopharmaceutical ((18)F-7B) was synthesized and characterized. To assess its affinity for Aß, binding assays with Aß1-42 fibrils, Alzheimer's disease (AD) homogenates, and autoradiography studies and their IHC correlations were performed. For assessing its overall pharmacokinetic profiles in general and its ability to cross the blood-brain barrier (BBB) in particular, biodistribution studies in normal mice were performed. Finally, for evaluating potential for (18)F-7B to serve as a targeted Aß probe, the microPET/CT imaging was performed in age-matched amyloid precursor protein/presenilin-1 (APP/PS1) mice and wild-type (WT) counterparts. RESULTS: The radiotracer (18)F-7B shows saturable binding to autopsy-confirmed AD homogenates (K d = 17.7 nM) and Aß1-42 fibrils (K d = 61 nM). Preliminary autoradiography studies show binding of (18)F-7B to cortical Aß plaques in autopsy-confirmed AD tissue sections, inhibition of that binding by unlabeled counterpart 7A-indicating specificity, and a good correlation of tracer binding with Aß immunostaining. The agent indicates high initial penetration into brains (7.23 ± 0.47%ID/g; 5 min) of normal mice, thus indicating a 5-min/120-min brain uptake clearance ratio of 4.7, a benchmark value (>4) consistent with the ability of agents to traverse the BBB to enable PET brain imaging. Additionally, (18)F-7B demonstrates the presence of parental species in human serum. Preliminary microPET/CT imaging demonstrates significantly higher retention of (18)F-7B in brains of transgenic mice compared with their WT counterparts, consistent with expected binding of the radiotracer to Aß plaques, present in APP/PS1 mice, compared with their age-matched WT counterparts lacking those Aß aggregates. CONCLUSIONS: These data offer a platform scaffold conducive to further optimization for developing new PET tracers to study Aß pathophysiology in vitro and in vivo.

19.
Mol Ther ; 23(6): 1110-1122, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25807290

ABSTRACT

Described herein is a first-in-man attempt to both genetically modify T cells with an imagable suicide gene and track these transduced donor T cells in allogeneic stem cell transplantation recipients using noninvasive positron emission tomography/computerized tomography (PET/CT) imaging. A suicide gene encoding a human CD34-Herpes Simplex Virus-1-thymidine kinase (CD34-TK75) fusion enabled enrichment of retrovirally transduced T cells (TdT), control of graft-versus-host disease and imaging of TdT migration and expansion in vivo in mice and man. Analysis confirmed that CD34-TK75-enriched TdT contained no replication competent γ-retrovirus, were sensitive to ganciclovir, and displayed characteristic retroviral insertion sites (by targeted sequencing). Affinity-purified CD34-TK75(+)-selected donor T cells (1.0-13 × 10(5))/kg were infused into eight patients who relapsed after allogeneic stem cell transplantation. Six patients also were administered 9-[4-((18)F)fluoro-3-hydroxymethyl-butyl]guanine ([(18)F]FHBG) to specifically track the genetically modified donor T cells by PET/CT at several time points after infusion. All patients were assessed for graft-versus-host disease, response to ganciclovir, circulating TdT cells (using both quantitative polymerase chain reaction and [(18)F]FHBG PET/CT imaging), TdT cell clonal expansion, and immune response to the TdT. This phase 1 trial demonstrated that genetically modified T cells and [(18)F]FHBG can be safely infused in patients with relapsed hematologic malignancies after allogeneic stem cell transplantation.


Subject(s)
Antigens, CD34/immunology , Positron-Emission Tomography/methods , Stem Cell Transplantation/methods , T-Lymphocytes/immunology , Transduction, Genetic , Transplantation, Homologous/methods , Animals , Antigens, CD34/genetics , Antigens, CD34/metabolism , Cell Line, Tumor , Feasibility Studies , Flow Cytometry , Ganciclovir/pharmacology , Graft vs Host Disease/immunology , Guanine/administration & dosage , Guanine/analogs & derivatives , Herpesvirus 1, Human/genetics , Humans , Leukocytes, Mononuclear/metabolism , Mice , NIH 3T3 Cells , Pilot Projects , T-Lymphocytes/metabolism , Thymidine Kinase/genetics , Thymidine Kinase/metabolism , Treatment Outcome
20.
PLoS One ; 9(10): e109361, 2014.
Article in English | MEDLINE | ID: mdl-25353349

ABSTRACT

Lipophilic cationic technetium-99m-complexes are widely used for myocardial perfusion imaging (MPI). However, inherent uncertainties in the supply chain of molybdenum-99, the parent isotope required for manufacturing 99Mo/99mTc generators, intensifies the need for discovery of novel MPI agents incorporating alternative radionuclides. Recently, germanium/gallium (Ge/Ga) generators capable of producing high quality 68Ga, an isotope with excellent emission characteristics for clinical PET imaging, have emerged. Herein, we report a novel 68Ga-complex identified through mechanism-based cell screening that holds promise as a generator-produced radiopharmaceutical for PET MPI.


Subject(s)
Ethylenediamines/chemical synthesis , Gallium Radioisotopes/chemistry , Organometallic Compounds/chemical synthesis , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemical synthesis , Animals , Cell Line , Ethylenediamines/chemistry , Ethylenediamines/pharmacokinetics , Humans , MCF-7 Cells , Male , Mice , Myocardial Perfusion Imaging/methods , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacokinetics , Radionuclide Generators , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...