Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
NPJ Precis Oncol ; 8(1): 42, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383736

ABSTRACT

The search for understanding immunotherapy response has sparked interest in diverse areas of oncology, with artificial intelligence (AI) and radiomics emerging as promising tools, capable of gathering large amounts of information to identify suitable patients for treatment. The application of AI in radiology has grown, driven by the hypothesis that radiology images capture tumor phenotypes and thus could provide valuable insights into immunotherapy response likelihood. However, despite the rapid growth of studies, no algorithms in the field have reached clinical implementation, mainly due to the lack of standardized methods, hampering study comparisons and reproducibility across different datasets. In this review, we performed a comprehensive assessment of published data to identify sources of variability in radiomics study design that hinder the comparison of the different model performance and, therefore, clinical implementation. Subsequently, we conducted a use-case meta-analysis using homogenous studies to assess the overall performance of radiomics in estimating programmed death-ligand 1 (PD-L1) expression. Our findings indicate that, despite numerous attempts to predict immunotherapy response, only a limited number of studies share comparable methodologies and report sufficient data about cohorts and methods to be suitable for meta-analysis. Nevertheless, although only a few studies meet these criteria, their promising results underscore the importance of ongoing standardization and benchmarking efforts. This review highlights the importance of uniformity in study design and reporting. Such standardization is crucial to enable meaningful comparisons and demonstrate the validity of biomarkers across diverse populations, facilitating their implementation into the immunotherapy patient selection process.

3.
Radiol Artif Intell ; 6(2): e230118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38294307

ABSTRACT

Purpose To identify precise three-dimensional radiomics features in CT images that enable computation of stable and biologically meaningful habitats with machine learning for cancer heterogeneity assessment. Materials and Methods This retrospective study included 2436 liver or lung lesions from 605 CT scans (November 2010-December 2021) in 331 patients with cancer (mean age, 64.5 years ± 10.1 [SD]; 185 male patients). Three-dimensional radiomics were computed from original and perturbed (simulated retest) images with different combinations of feature computation kernel radius and bin size. The lower 95% confidence limit (LCL) of the intraclass correlation coefficient (ICC) was used to measure repeatability and reproducibility. Precise features were identified by combining repeatability and reproducibility results (LCL of ICC ≥ 0.50). Habitats were obtained with Gaussian mixture models in original and perturbed data using precise radiomics features and compared with habitats obtained using all features. The Dice similarity coefficient (DSC) was used to assess habitat stability. Biologic correlates of CT habitats were explored in a case study, with a cohort of 13 patients with CT, multiparametric MRI, and tumor biopsies. Results Three-dimensional radiomics showed poor repeatability (LCL of ICC: median [IQR], 0.442 [0.312-0.516]) and poor reproducibility against kernel radius (LCL of ICC: median [IQR], 0.440 [0.33-0.526]) but excellent reproducibility against bin size (LCL of ICC: median [IQR], 0.929 [0.853-0.988]). Twenty-six radiomics features were precise, differing in lung and liver lesions. Habitats obtained with precise features (DSC: median [IQR], 0.601 [0.494-0.712] and 0.651 [0.52-0.784] for lung and liver lesions, respectively) were more stable than those obtained with all features (DSC: median [IQR], 0.532 [0.424-0.637] and 0.587 [0.465-0.703] for lung and liver lesions, respectively; P < .001). In the case study, CT habitats correlated quantitatively and qualitatively with heterogeneity observed in multiparametric MRI habitats and histology. Conclusion Precise three-dimensional radiomics features were identified on CT images that enabled tumor heterogeneity assessment through stable tumor habitat computation. Keywords: CT, Diffusion-weighted Imaging, Dynamic Contrast-enhanced MRI, MRI, Radiomics, Unsupervised Learning, Oncology, Liver, Lung Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Sagreiya in this issue.


Subject(s)
Liver Neoplasms , Lung Neoplasms , Humans , Male , Middle Aged , Retrospective Studies , Reproducibility of Results , Radiomics , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Machine Learning , Liver Neoplasms/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...