Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-444407

ABSTRACT

As coronaviruses (CoVs) replicate in the host cell cytoplasm, they rely on their own capping machinery to ensure the efficient translation of their mRNAs, protect them from degradation by cellular 5 exoribonucleases, and escape innate immune sensing. The CoV nonstructural protein 14 (nsp14) is a bi-functional replicase subunit harboring an N-terminal 3'-to-5' exoribonuclease (ExoN) domain and a C-terminal (N7-guanine)-methyltransferase (N7-MTase) domain that is presumably involved in viral mRNA capping. Here, we aimed to integrate structural, biochemical, and virological data to assess the importance of conserved N7-MTase residues for nsp14s enzymatic activities and virus viability. We revisited the crystal structure of severe acute respiratory syndrome (SARS)-CoV nsp14 to perform an in silico comparative analysis between betacoronaviruses. We identified several residues likely involved in the formation of the N7-MTase catalytic pocket, which presents a fold distinct from the Rossmann fold observed in most known MTases. Next, for SARS-CoV and Middle East respiratory syndrome-CoV, site-directed mutagenesis of selected residues was used to assess their importance for in vitro enzymatic activity. Most of the engineered mutations abolished N7-MTase activity, while not affecting nsp14-ExoN activity. Upon reverse engineering of these mutations into different betacoronavirus genomes, we identified two substitutions (R310A and F426A in SARS-CoV nsp14) abrogating virus viability and one mutation (H424A) yielding a crippled phenotype across all viruses tested. Our results identify the N7-MTase as a critical enzyme for betacoronavirus replication and define key residues of its catalytic pocket that can be targeted to design inhibitors with a potential pan-coronaviral activity spectrum. Significance StatementThe ongoing SARS-CoV-2 pandemic emphasizes the urgent need to develop efficient broad-spectrum anti-CoV drugs. The structure-function characterization of conserved CoV replicative enzymes is key to identifying the most suitable drug targets. Using a multidisciplinary comparative approach and different betacoronaviruses, we characterized the key conserved residues of the nsp14 (N7-guanine)-methyltransferase, a poorly defined subunit of the CoV mRNA-synthesizing machinery. Our study highlights the unique structural features of this enzyme and establishes its essential role in betacoronavirus replication, while identifying two residues that are critical for the replication of the four betacoronaviruses tested, including SARS-CoV-2.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-436564

ABSTRACT

How viruses from the Coronaviridae family initiate viral RNA synthesis is unknown. Here we show that the SARS-CoV-1 and -2 Nidovirus RdRp-Associated Nucleotidyltransferase (NiRAN) domain on nsp12 uridylates the viral cofactor nsp8, forming a UMP-Nsp8 covalent intermediate that subsequently primes RNA synthesis from a poly(A) template; a protein-priming mechanism reminiscent of Picornaviridae enzymes. In parallel, the RdRp active site of nsp12 synthesizes a pppGpU primer, which primes (-)ssRNA synthesis at the precise genome-poly(A) junction. The guanosine analogue 5-triphosphate AT-9010 (prodrug: AT-527) tightly binds to the NiRAN and inhibits both nsp8-labeling and the initiation of RNA synthesis. A 2.98 [A] resolution Cryo-EM structure of the SARS-CoV-2 nsp12-nsp7-(nsp8)2 /RNA/NTP quaternary complex shows AT-9010 simultaneously binds to both NiRAN and RdRp active site of nsp12, blocking their respective activities. AT-527 is currently in phase II clinical trials, and is a potent inhibitor of SARS-CoV-1 and -2, representing a promising drug for COVID-19 treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...