Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 252: 126498, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37640189

ABSTRACT

In the last few months 85,536 cases and 91 deaths were reported for monkeypox disease from 110 and 71 locations from all over the world, correspondingly. The vaccines of other viruses that belong to the Poxviridae family were recommended for monkeypox. There is no licensed vaccine available for monkeypox that originated from monkeypox virus. In the present study, using the reverse vaccinology approach we have performed whole proteome analysis of monkeypox virus to screen out the potential antigenic proteins that can be used as vaccine candidates. We have also designed 12 B cell epitopes-based vaccine candidates using immunoinformatics approach. We have found a total 15 potential antigenic proteins out of which 14 antigens are novel and can be used for further vaccine development against monkeypox. We have performed the physicochemical properties, antigenic, immunogenic and allergenicity prediction of the designed vaccine candidates MPOXVs (MPOXV1-MPOXV12). Further, we have performed molecular docking, in silico immune simulation and cloning of MPOXVs. All MPOXVs are potential vaccine candidate that can potentially activate the innate, cellular, and humoral immune response. However, further experimental validation is required before moving to clinical trials. This is the first oral vaccine reported for monkeypox virus derived from monkeypox proteins.


Subject(s)
Epitopes, B-Lymphocyte , Mpox (monkeypox) , Humans , Molecular Docking Simulation , Proteome , Monkeypox virus , Epitopes, T-Lymphocyte/chemistry , Vaccines, Subunit , Computational Biology
2.
J Biomol Struct Dyn ; : 1-19, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37498146

ABSTRACT

In the last few years, the worldwide population has suffered from the SARS-CoV-2 pandemic. The WHO dashboard indicated that around 504,079,039 people were infected and 6,204,155 died from COVID-19 caused by different variants of SARS-CoV-2. Recently, a new variant of SARS-CoV-2 (B.1.1.529) was reported by South Africa known as Omicron. The high transmissibility rate and resistance towards available anti-SARS-CoV-2 drugs/vaccines/monoclonal antibodies, make Omicron a variant of concern. Because of various mutations in spike protein, available diagnostic and therapeutic treatments are not reliable. Therefore, the present study explored the development of some therapeutic peptides that can inhibit the SARS-CoV-2 virus interaction with host ACE2 receptors and can also be used for diagnostic purposes. The screened linear B cell epitopes derived from receptor-binding domain of spike protein of Omicron variant were evaluated as peptide inhibitor/vaccine candidates through different bioinformatics tools including molecular docking and simulation to analyze the interaction between Omicron peptide and human ACE2 receptor. Overall, in-silico studies revealed that Omicron peptides OP1-P12, OP14, OP20, OP23, OP24, OP25, OP26, OP27, OP28, OP29, and OP30 have the potential to inhibit Omicron interaction with ACE2 receptor. Moreover, Omicron peptides OP20, OP22, OP23, OP24, OP25, OP26, OP27, and OP30 have shown potential antigenic and immunogenic properties that can be used in design and development vaccines against Omicron. Although the in-silico validation was performed by comparative analysis with the control peptide inhibitor, further validation through wet lab experimentation is required before its use as therapeutic peptides.Communicated by Ramaswamy H. Sarma.

3.
J Biomol Struct Dyn ; 41(6): 2118-2145, 2023 04.
Article in English | MEDLINE | ID: mdl-35067195

ABSTRACT

Mucormycosis is a deadly fungal disease mainly caused by Rhizopus oryzae (strain 99-880), also known as Rhizopus delemar. Previously, mucormycosis occurs in immunocompromised patients of diabetes mellitus, cancer, organ transplant, etc. But there was a drastic increase in mucormycosis cases in the ongoing COVID-19 pandemic. Despite several available therapies and antifungal treatments, the mortality rate of mucormycosis is about more than 50%. Currently, there is no vaccine available in the market for mucormycosis that urgently needs to develop a potential vaccine against mucormycosis with high efficacy. In the present study, we have screened 4 genome-derived predicted antigens (GDPA) through sequential filtration of the whole proteome of R. delemar using different benchmarked bioinformatics tools. These 4 GDPA along with 4 randomly selected experimentally reported antigens (ERA) were sourced for prediction of B- and T- cell epitopes and utilized in designing of two potential multi-epitope vaccine candidates which can induce both innate and adaptive immunity against R. delemar. Besides these, comparative immune simulation studies and in silico cloning were performed using L. lactis as an expression system for their possible uses as oral vaccines. This is the first multi-epitope vaccine designed against R. delemar through systematic pipelined reverse vaccinology and immunoinformatic approaches. Although the wet-lab based experimental validation of designed vaccines is required before testing in the preclinical model, the current study will significantly help in reducing the cost of experimentation as well as improving the efficacy of vaccine therapy against mucormycosis and other pathogenic diseases.Communicated by Ramaswamy H. Sarma.


Subject(s)
COVID-19 , Mucormycosis , Humans , Mucormycosis/microbiology , Proteome , Rhizopus oryzae , Pandemics , Epitopes, T-Lymphocyte , Computational Biology , Epitopes, B-Lymphocyte , Molecular Docking Simulation , Vaccines, Subunit
4.
J Med Virol ; 93(1): 275-299, 2021 01.
Article in English | MEDLINE | ID: mdl-32617987

ABSTRACT

There have been over seven million cases and almost 413 372 deaths globally due to the novel coronavirus (2019-nCoV) associated disease COVID-19, as of 11 June 2020. Phylogenetic analysis suggests that there is a common source for these infections. The overall sequence similarities between the spike protein of 2019-nCoV and that of SARS-CoV are known to be around 76% to 78% and 73% to 76% for the whole protein and receptor-binding domain (RBD), respectively. Thus, they have the potential to serve as the drug and/or vaccine candidate. However, the individual response against 2019-nCoV differs due to genetic variations in the human population. Understanding the variations in angiotensin-converting enzyme 2 (ACE2) and human leukocyte antigen (HLA) that may affect the severity of 2019-nCoV infection could help in identifying individuals at a higher risk from the COVID-19. A number of potential drugs/vaccines as well as antibody/cytokine-based therapeutics are in various developmental stages of preclinical/clinical trials against SARS-CoV, MERS-CoV, and 2019-nCoV with substantial cross-reactivity, and may be used against COVID-19. For diagnosis, the reverse-transcription polymerase chain reaction is the gold standard test for initial diagnosis of COVID-19. A kit based on serological tests are also recommended for investigating the spread of COVID-19 but this is challenging due to the antibodies cross-reactivity. This review comprehensively summarizes the recent reports available regarding the host-pathogen interaction, morphological and genomic structure of the virus, and the diagnostic techniques as well as the available potential therapeutics against COVID-19.


Subject(s)
COVID-19/diagnosis , COVID-19/physiopathology , COVID-19/therapy , Host-Pathogen Interactions , SARS-CoV-2/genetics , Animals , Antibodies, Viral/immunology , Chiroptera/virology , Cross Reactions , Humans , Phylogeny , Receptors, Virus/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
Int J Biol Macromol ; 158: 159-179, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32360460

ABSTRACT

Human malaria is a pathogenic disease mainly caused by Plasmodium falciparum, which was responsible for about 405,000 deaths globally in the year 2018. To date, several vaccine candidates have been evaluated for prevention, which failed to produce optimal output at various preclinical/clinical stages. This study is based on designing of polypeptide vaccines (PVs) against human malaria that cover almost all stages of life-cycle of Plasmodium and for the same 5 genome derived predicted antigenic proteins (GDPAP) have been used. For the development of a multi-immune inducer, 15 PVs were initially designed using T-cell epitope ensemble, which covered >99% human population as well as linear B-cell epitopes with or without adjuvants. The immune simulation of PVs showed higher levels of T-cell and B-cell activities compared to positive and negative vaccine controls. Furthermore, in silico cloning of PVs and codon optimization followed by enhanced expression within Lactococcus lactis host system was also explored. Although, the study has sound theoretical and in silico findings, the in vitro/in vivo evaluation seems imperative to warrant the immunogenicity and safety of PVs towards management of P. falciparum infection in the future.


Subject(s)
Epitopes/chemistry , Malaria Vaccines/chemistry , Molecular Docking Simulation , Plasmodium falciparum/immunology , Administration, Oral , Antibody Affinity , Binding Sites, Antibody , Epitopes/immunology , Humans , Immunogenicity, Vaccine , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/chemistry , Vaccines, Subunit/immunology
6.
Comput Biol Chem ; 86: 107259, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32339913

ABSTRACT

Visceral leishmaniasis (VL) caused by Leishmania donovani is a fatal parasitic disease affecting primarily the poor population in endemic countries. Increasing number of deaths as well as resistant to existing drugs necessitates the development of an effective vaccine for successful treatment of VL. The present study employed a combinatorial approach for designing monomer vaccine construct against L. donovani by applying forecasted B- and T- cell epitopes from 4 genome derived antigenic proteins having secretory signal peptides and glycophosphatidylinositol (GPI) anchors with ≤ 1 transmembrane helix. The forecasted population coverage of chosen T cell epitope ensemble (combined HLA class I and II) cover 99.14 % of world-wide human population. The predicted 3D structure of vaccine constructs (VC1/VC2) were modeled using homology modeling approach and docked to innate immune receptors TLR-2 and TLR-4 with respective docking energies -1231.4/-910.3 and -1119.4/-1476 kcal/mol. Overall, the aforementioned designed vaccine constructs were found appropriate for including in self-assembly protein nanoparticles (SAPN) for further study in developing cutting-edge precision vaccine against VL in short duration with cost-effective manner.


Subject(s)
Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/prevention & control , Protozoan Vaccines , Antigens, Protozoan/immunology , Genome, Protozoan , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Leishmania donovani/genetics , Leishmania donovani/immunology , Protozoan Proteins/immunology , Toll-Like Receptor 2/immunology , Toll-Like Receptor 4/immunology
7.
Microb Pathog ; 136: 103704, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31479726

ABSTRACT

Visceral leishmaniasis (VL) is a dreadful protozoan disease caused by Leishmania donovani that severely affects huge populations in tropical and sub-tropical regions. The present study reports an unbiased genome based screening of 4 potent vaccine antigens against 8023 L. donovani proteins by following the criteria of presence of signal peptides, GPI-anchors and ≤1 transmembrane helix using advanced bioinformatics tools viz. SignalP4.0, PredGPI and TMHMM2.0, respectively. They are designated as genome based predicted signal peptide antigens (GBPSPA). The antigenicity/immunogenicity of chosen vaccine antigens (GBPSPA) with 4 randomly selected known leishmanial antigens (RSKLA) was compared by simulation study employing C-ImmSim software for human immune responses. This revealed better immunological responses. These antigens were further evaluated for the presence of B- and T-cell epitopes using immune epitope database (IEDB) based recommended consensus method of MHC class I and II tools. It was found to forecast CD4+ and CD8+ T-cell responses in genetically diverse human population worldwide as well as different endemic regions through IEDB based predicted population coverage (PPC) analysis tool. The worldwide percent PPC value of combined (HLA class I and II) epitope ensemble forecast was found to be 99.98, 99.96 and 50.04, respectively for GBPSPA, RSKLA and experimentally known epitopes (EKE) of L. donovani. Therefore, these potential antigens/epitope ensembles could favor the design of prospective and novel vaccine constructs like self-assembled epitopes as nano vaccine formulations against VL. Overall, the present study will serve as a model framework that might improve the effectiveness of designed vaccine against L. donovani and other related pathogens.


Subject(s)
Antigens, Protozoan/immunology , Epitopes/immunology , Leishmania donovani/immunology , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/prevention & control , Protozoan Vaccines/isolation & purification , Antigens, Protozoan/genetics , Computational Biology , Epitopes/genetics , Genetic Testing , Humans , Leishmania donovani/genetics , Protozoan Vaccines/genetics , Protozoan Vaccines/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccines, Synthetic/isolation & purification
8.
BMC Bioinformatics ; 19(Suppl 13): 468, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30717656

ABSTRACT

BACKGROUND: In the current scenario, designing of world-wide effective malaria vaccine against Plasmodium falciparum remain challenging despite the significant progress has been made in last few decades. Conventional vaccinology (isolate, inactivate and inject) approaches are time consuming, laborious and expensive; therefore, the use of computational vaccinology tools are imperative, which can facilitate the design of new and promising vaccine candidates. RESULTS: In current investigation, initially 5548 proteins of P. falciparum genome were carefully chosen for the incidence of signal peptide/ anchor using SignalP4.0 tool that resulted into 640 surface linked proteins (SLP). Out of these SLP, only 17 were predicted to contain GPI-anchors using PredGPI tool in which further 5 proteins were considered as malarial antigenic adhesins by MAAP and VaxiJen programs, respectively. In the subsequent step, T cell epitopes of 5 genome derived predicted antigenic adhesins (GDPAA) and 5 randomly selected known malarial adhesins (RSKMA) were analysed employing MHC class I and II tools of IEDB analysis resource. Finally, VaxiJen scored T cell epitopes from each antigen were considered for prediction of population coverage (PPC) analysis in the world-wide population including malaria endemic regions. The validation of the present in silico strategy was carried out by comparing the PPC of combined (MHC class I and II) predicted epitope ensemble among GDPAA (99.97%), RSKMA (99.90%) and experimentally known epitopes (EKE) of P. falciparum (97.72%) pertaining to world-wide human population. CONCLUSIONS: The present study systematically screened 5 potential protective antigens from P. falciparum genome using bioinformatics tools. Interestingly, these GDPAA, RSKMA and EKE of P. falciparum epitope ensembles forecasted to contain highly promiscuous T cell epitopes, which are potentially effective for most of the world-wide human population with malaria endemic regions. Therefore, these epitope ensembles could be considered in near future for novel and significantly effective vaccine candidate against malaria.


Subject(s)
Computational Biology/methods , Genome , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Vaccinology , Amino Acid Sequence , Antigens, Protozoan/immunology , Cluster Analysis , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/immunology , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Molecular Docking Simulation , Protozoan Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...