Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Oncol ; 33(12): 1269-1283, 2022 12.
Article in English | MEDLINE | ID: mdl-36089135

ABSTRACT

BACKGROUND: Targeted therapies have transformed clinical management of advanced biliary tract cancer (BTC). Cell-free DNA (cfDNA) analysis is an attractive approach for cancer genomic profiling that overcomes many limitations of traditional tissue-based analysis. We examined cfDNA as a tool to inform clinical management of patients with advanced BTC and generate novel insights into BTC tumor biology. PATIENTS AND METHODS: We analyzed next-generation sequencing data of 2068 cfDNA samples from 1671 patients with advanced BTC generated with Guardant360. We carried out clinical annotation on a multi-institutional subset (n = 225) to assess intra-patient cfDNA-tumor concordance and the association of cfDNA variant allele fraction (VAF) with clinical outcomes. RESULTS: Genetic alterations were detected in cfDNA in 84% of patients, with targetable alterations detected in 44% of patients. Fibroblast growth factor receptor 2 (FGFR2) fusions, isocitrate dehydrogenase 1 (IDH1) mutations, and BRAF V600E were clonal in the majority of cases, affirming these targetable alterations as early driver events in BTC. Concordance between cfDNA and tissue for mutation detection was high for IDH1 mutations (87%) and BRAF V600E (100%), and low for FGFR2 fusions (18%). cfDNA analysis uncovered novel putative mechanisms of resistance to targeted therapies, including mutation of the cysteine residue (FGFR2 C492F) to which covalent FGFR inhibitors bind. High pre-treatment cfDNA VAF was associated with poor prognosis and shorter response to chemotherapy and targeted therapy. Finally, we report the frequency of promising targets in advanced BTC currently under investigation in other advanced solid tumors, including KRAS G12C (1.0%), KRAS G12D (5.1%), PIK3CA mutations (6.8%), and ERBB2 amplifications (4.9%). CONCLUSIONS: These findings from the largest and most comprehensive study to date of cfDNA from patients with advanced BTC highlight the utility of cfDNA analysis in current management of this disease. Characterization of oncogenic drivers and mechanisms of therapeutic resistance in this study will inform drug development efforts to reduce mortality for patients with BTC.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Cell-Free Nucleic Acids , Humans , Cell-Free Nucleic Acids/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Bile Duct Neoplasms/genetics , High-Throughput Nucleotide Sequencing , Mutation , Biliary Tract Neoplasms/drug therapy , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/pathology
2.
Fam Cancer ; 21(2): 181-188, 2022 04.
Article in English | MEDLINE | ID: mdl-33837488

ABSTRACT

Lynch syndrome is an inherited cancer predisposition syndrome caused by germline defects in any of the mismatch repair (MMR) genes. Diagnosis of carriers makes precision prevention, early detection, and tailored treatment possible. Herein we report a novel founder deletion of 18,758 bp, mediated by Alu repeats on both sides, detected in Ethiopian Jews. The deletion, which encompasses exon 9-10 of the MSH2 coding sequence, is associated mainly with early-onset MSH2/MSH6-deficient colorectal cancer (CRC) and liposarcoma. Testing of 35 members of 5 seemingly unrelated families of Ethiopian origin yielded 10/21 (48%) carriers, of whom 9 had CRC. Age at first tumor diagnosis ranged from 16 to 89 years. Carriers from the oldest generations were diagnosed after age 45 years (mean 57), and carriers from the younger generation were diagnosed before age 45 years (mean 30). Awareness of this founder deletion is important to improve patient diagnosis, institute surveillance from an early age, and refer patients for genetic counseling addressing the risk of bi-allelic constitutional MMR deficiency syndrome.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , Adolescent , Adult , Aged , Aged, 80 and over , Colorectal Neoplasms/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , DNA Mismatch Repair/genetics , Ethiopia , Germ-Line Mutation , Humans , Jews/genetics , Middle Aged , MutS Homolog 2 Protein/genetics , Young Adult
3.
Resuscitation ; 106: 96-101, 2016 09.
Article in English | MEDLINE | ID: mdl-27423422

ABSTRACT

AIM: MicroRNAs (miRNAs) have regulatory functions in organs critical in resuscitation from sudden cardiac arrest due to ventricular fibrillation (VF-SCA); therefore, circulating miRNAs may be markers of VF-SCA outcome. METHODS: We measured candidate miRNAs (N=45) in plasma using qRT-PCR among participants of a population-based VF-SCA study. Participants were randomly selected cases who died in the field (DF, n=15), died in hospital (DH, n=15), or survived to discharge (DC, n=15), and, age-, sex-, and race-matched controls (n=15). MiRNA levels were compared using ANOVA, t-tests, and fold-changes. RESULTS: Mean age of groups ranged from 66.9 to 69.7. Most participants were male (53-67%) and white (67%). Comparing cases to controls, plasma levels of 17 miRNAs expressed in heart, brain, liver, and other tissues (including miR-29c, -34a, -122, -145, -200a, -210, -499-5p, and -663b) were higher and three non-specific miRNAs lower (miR-221, -330-3p, and -9-5p). Among DH or DC compared with DF cases, levels of two miRNAs (liver-specific miR-122 and non-specific miR-205) were higher and two heart-specific miRNAs (miR-208b and -499-5p) lower. Among DC vs. DF cases, levels of three miRNAs (miR-122, and non-specific miR-200a and -205) were higher and four heart-specific miRNAs (miR-133a, -133b, -208b, and -499-5p) lower. Among DC vs. DH cases, levels of two non-specific miRNAs (miR-135a and -9-3p) were lower. CONCLUSIONS: Circulating miRNAs expressed in heart, brain, and other tissues differ between VF-SCA cases and controls and are related to resuscitation outcomes. Measurement of miRNAs may clarify mechanisms underlying resuscitation, improve prognostication, and guide development of therapies. Results require replication.


Subject(s)
MicroRNAs/blood , Out-of-Hospital Cardiac Arrest/genetics , Aged , Analysis of Variance , Biomarkers/blood , Cardiopulmonary Resuscitation/mortality , Female , Gene Expression , Humans , Male , Middle Aged , Out-of-Hospital Cardiac Arrest/mortality , Real-Time Polymerase Chain Reaction
4.
Proc Natl Acad Sci U S A ; 98(23): 13266-71, 2001 Nov 06.
Article in English | MEDLINE | ID: mdl-11698685

ABSTRACT

The mouse has become an indispensable and versatile model organism for the study of development, genetics, behavior, and disease. The application of comprehensive gene expression profiling technologies to compare normal and diseased tissues or to assess molecular alterations resulting from various experimental interventions has the potential to provide highly detailed qualitative and quantitative descriptions of these processes. Ideally, to interpret experimental data, the magnitude and diversity of gene expression for the system under study should be well characterized, yet little is known about the normal variation of mouse gene expression in vivo. To assess natural differences in murine gene expression, we used a 5406-clone spotted cDNA microarray to quantitate transcript levels in the kidney, liver, and testis from each of 6 normal male C57BL6 mice. We used ANOVA to compare the variance across the six mice to the variance among four replicate experiments performed for each mouse tissue. For the 6 kidney samples, 102 of 3,088 genes (3.3%) exhibited a statistically significant mouse variance at a level of 0.05. In the testis, 62 of 3,252 genes (1.9%) showed statistically significant variance, and in the liver, there were 21 of 2,514 (0.8%) genes with significantly variable expression. Immune-modulated, stress-induced, and hormonally regulated genes were highly represented among the transcripts that were most variable. The expression levels of several genes varied significantly in more than one tissue. These studies help to define the baseline level of variability in mouse gene expression and emphasize the importance of replicate microarray experiments.


Subject(s)
Gene Expression Profiling , Animals , Base Sequence , DNA Primers , DNA, Complementary , Kidney/metabolism , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Oligonucleotide Array Sequence Analysis , Testis/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...