Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Biomech ; 38(4): 201-209, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35894976

ABSTRACT

Hockey is a fast-paced sport known for body checking, or intentional collisions used to separate opponents from the puck. Exposure to these impacts is concerning, as evidence suggests head impact exposure (HIE), even if noninjurious, can cause long-term brain changes. Currently, there is limited understanding of the effect of impact direction and collision speed on HIE. Video analysis was used to determine speed and direction for 162 collisions from 13 youth athletes. These data were paired with head kinematic data collected with an instrumented mouthpiece. Relationships between peak resultant head kinematics and speeds were evaluated with linear regression. Mean athlete speeds and relative velocity between athletes ranged from 2.05 to 2.76 m/s. Mean peak resultant linear acceleration, rotational velocity, and rotational acceleration were 13.1 g, 10.5 rad/s, and 1112 rad/s2, respectively. Significant relationships between speeds and head kinematics emerged when stratified by contact characteristics. HIE also varied by direction of collision; most collisions occurred in the forward-oblique (ie, offset from center) direction; frontal collisions had the greatest magnitude peak kinematics. These findings indicate that HIE in youth hockey is influenced by speed and direction of impact. This study may inform future strategies to reduce the severity of HIE in hockey.


Subject(s)
Brain Concussion , Hockey , Acceleration , Adolescent , Biomechanical Phenomena , Head , Head Protective Devices , Humans
2.
J Appl Biomech ; 38(1): 2-11, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34911036

ABSTRACT

Soccer players are regularly exposed to head impacts by intentionally heading the ball. Evidence suggests repetitive subconcussive head impacts may affect the brain, and females may be more vulnerable to brain injury than males. This study aimed to characterize head impact exposure among National Collegiate Athletic Association women's soccer players using a previously validated mouthpiece-based sensor. Sixteen players were instrumented during 72 practices and 24 games. Head impact rate and rate of risk-weighted cumulative exposure were compared across session type and player position. Head kinematics were compared across session type, impact type, player position, impact location, and ball delivery method. Players experienced a mean (95% confidence interval) head impact rate of 0.468 (0.289 to 0.647) head impacts per hour, and exposure rates varied by session type and player position. Headers accounted for 89% of head impacts and were associated with higher linear accelerations and rotational accelerations than nonheader impacts. Headers in which the ball was delivered by a long kick had greater peak kinematics (all P < .001) than headers in which the ball was delivered by any other method. Results provide increased understanding of head impact frequency and magnitude in women's collegiate soccer and may help inform efforts to prevent brain injury.


Subject(s)
Brain Concussion , Soccer , Acceleration , Athletes , Brain Concussion/epidemiology , Female , Head , Humans , Male , Universities
SELECTION OF CITATIONS
SEARCH DETAIL
...