Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 227(1)2024 May 07.
Article in English | MEDLINE | ID: mdl-38457127

ABSTRACT

Since 1999, The Arabidopsis Information Resource (www.arabidopsis.org) has been curating data about the Arabidopsis thaliana genome. Its primary focus is integrating experimental gene function information from the peer-reviewed literature and codifying it as controlled vocabulary annotations. Our goal is to produce a "gold standard" functional annotation set that reflects the current state of knowledge about the Arabidopsis genome. At the same time, the resource serves as a nexus for community-based collaborations aimed at improving data quality, access, and reuse. For the past decade, our work has been made possible by subscriptions from our global user base. This update covers our ongoing biocuration work, some of our modernization efforts that contribute to the first major infrastructure overhaul since 2011, the introduction of JBrowse2, and the resource's role in community activities such as organizing the structural reannotation of the genome. For gene function assessment, we used gene ontology annotations as a metric to evaluate: (1) what is currently known about Arabidopsis gene function and (2) the set of "unknown" genes. Currently, 74% of the proteome has been annotated to at least one gene ontology term. Of those loci, half have experimental support for at least one of the following aspects: molecular function, biological process, or cellular component. Our work sheds light on the genes for which we have not yet identified any published experimental data and have no functional annotation. Drawing attention to these unknown genes highlights knowledge gaps and potential sources of novel discoveries.


Subject(s)
Arabidopsis , Databases, Genetic , Molecular Sequence Annotation , Arabidopsis/genetics , Genome, Plant , Gene Ontology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism
2.
Plant Direct ; 4(12): e00293, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33392435

ABSTRACT

We aim to enable the accurate and efficient transfer of knowledge about gene function gained from Arabidopsis thaliana and other model organisms to other plant species. This knowledge transfer is frequently challenging in plants due to duplications of individual genes and whole genomes in plant lineages. Such duplications result in complex evolutionary relationships between related genes, which may have similar sequences but highly divergent functions. In such cases, functional inference requires more than a simple sequence similarity calculation. We have developed an online resource, PhyloGenes (phylogenes.org), that displays precomputed phylogenetic trees for plant gene families along with experimentally validated function information for individual genes within the families. A total of 40 plant genomes and 10 non-plant model organisms are represented in over 8,000 gene families. Evolutionary events such as speciation and duplication are clearly labeled on gene trees to distinguish orthologs from paralogs. Nearly 6,000 families have at least one member with an experimentally supported annotation to a Gene Ontology (GO) molecular function or biological process term. By displaying experimentally validated gene functions associated to individual genes within a tree, PhyloGenes enables functional inference for genes of uncharacterized function, based on their evolutionary relationships to experimentally studied genes, in a visually traceable manner. For the many families containing genes that have evolved to perform different functions, PhyloGenes facilitates the use of evolutionary history to determine the most likely function of genes that have not been experimentally characterized. Future work will enrich the resource by incorporating additional gene function datasets such as plant gene expression atlas data.

SELECTION OF CITATIONS
SEARCH DETAIL
...