Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 24(27): 16576-16585, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35775378

ABSTRACT

Molybdenum sulfides and molybdenum oxysulfides are considered a promising and cheap alternative to platinum as a catalyst for the hydrogen evolution reaction (HER). To better understand possible rearrangements during catalyst activation, we perform collision induced dissociation experiments in the gas phase with eight different molybdenum oxysulfides, namely [Mo2O2S6]2-, [Mo2O2S6]-, [Mo2O2S5]2-, [Mo2O2S5]-, [Mo2O2S4]-, [HMo2O2S6]-, [HMo2O2S5]- and [HMo2O2S4]-, on a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer. We identify fragmentation channels of the molybdenum oxysulfides and their interconnections. Together with quantum chemical calculations, the results show that [Mo2O2S4]- is a particularly stable species against further dissociation, which is reached from all starting species with relatively low collision energies. Most interestingly, H atom loss is the only fragmentation channel observed for [HMo2O2S4]- at low collision energies, which relates to potential HER activity, since two such H atom binding sites on a surface may act together to release H2. The calculations reveal that multiple isomers are often very close in energy, especially for the hydrogenated species, i.e., atomic hydrogen can bind at various sites of the clusters. S2 groups play a decisive role in hydrogen adsorption. These are further features with potential relevance for HER catalysis.

2.
J Am Soc Mass Spectrom ; 33(9): 1753-1760, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-35904429

ABSTRACT

Molybdenum sulfides are considered a promising and inexpensive alternative to platinum as a catalyst for the hydrogen evolution reaction. In this study, we perform collision-induced dissociation experiments in the gas phase with the halogenated molybdenum sulfides [Mo3S7Cl6]2-, [Mo3S7Br6]2-, and [Mo3S7I6]2-. We show that the first fragmentation step for all three dianions is charge separation via loss of a halide ion. As a second step, further halogen loss competes with the dissociation of a disulfur molecule, whereas the former becomes energetically more favorable and the latter becomes less favorable from chlorine via bromine to iodine. We show that the leaving S2 group is composed of sulfur atoms from two bridging groups. These decomposition pathways differ drastically from the pure [Mo3S13]2- clusters. The obtained insight into preferred dissociation pathways of molybdenum sulfides illustrate possible reaction pathways during the activation of these substances in a catalytic environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...