Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Oncol ; 16: 101323, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34954455

ABSTRACT

Successful cancer therapy is contingent on identifying cancer-specific aberrant phenotypes and their associated vulnerabilities. We recently reported that a subset of almost every cancer type contains a genome-wide defect in RNA Polymerase II-mediated transcription elongation (TEdef), which impairs the expression of long genes and confers resistance to anti-tumor immune attack. Using a combination of computational analysis and laboratory experiments, we report that tumor cells with TEdef have widespread overexpression of the components of the protein homeostasis machinery (mostly composed of short genes), including protein folding and clearance. Accordingly, TEdef cells were characterized by abnormally high levels of insoluble protein aggregates in the cytoplasm and autophagy influx. We present evidence that TEdef cells exhibit impaired clearance of misfolded protein aggregates through the ubiquitin-proteasome system, and thus rely on autophagy for their degradation. As such, while these cells were highly resistant to proteasome inhibitors, they were acutely sensitive to inhibitors of autophagy in vitro and in vivo. This study reveals a major aberrant phenotype that is observed in ∼15-25% of all cancers and characterizes a unique cellular vulnerability that can be readily exploited in the clinic to improve treatment efficacy.

2.
Oncogene ; 34(18): 2325-36, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-24954505

ABSTRACT

Disease progression and recurrence are major barriers to survival for breast cancer patients. Understanding the etiology of recurrent or metastatic breast cancer and underlying mechanisms is critical for the development of new treatments and improved survival. Here, we report that two commonly overexpressed breast cancer oncogenes, Ron (Recepteur d'Origine Nantaise) and DEK, cooperate to promote advanced disease through multipronged effects on ß-catenin signaling. The Ron receptor is commonly activated in breast cancers, and Ron overexpression in human disease stimulates ß-catenin nuclear translocation and is an independent predictor of metastatic dissemination. Dek is a chromatin-associated oncogene whose expression has been linked to cancer through multiple mechanisms, including ß-catenin activity. We demonstrate here that Dek is a downstream target of Ron receptor activation in murine and human models. The absence of Dek in the MMTV-Ron mouse model led to a significant delay in tumor development, characterized by decreased cell proliferation, diminished metastasis and fewer cells expressing mammary cancer stem cell markers. Dek complementation of cell lines established from this model was sufficient to promote cellular growth and invasion. Mechanistically, Dek expression stimulated the production and secretion of Wnt ligands to sustain an autocrine/paracrine canonical ß-catenin signaling loop. Finally, we show that Dek overexpression promotes tumorigenic phenotypes in immortalized human mammary epithelial MCF10A cells and, in the context of Ron receptor activation, correlates with disease recurrence and metastasis in patients. Overall, our studies demonstrate that DEK overexpression, due in part to Ron receptor activation, drives breast cancer progression through the induction of Wnt/ß-catenin signaling.


Subject(s)
Breast Neoplasms/pathology , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Oncogene Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Wnt Signaling Pathway , Animals , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Neoplasms, Experimental , Poly-ADP-Ribose Binding Proteins
3.
Oncogene ; 30(24): 2741-52, 2011 Jun 16.
Article in English | MEDLINE | ID: mdl-21317931

ABSTRACT

Breast cancer is a major cause of cancer-related deaths in American women; therefore, the identification of novel breast cancer-related molecules for the discovery of new markers and drug targets remains essential. The human DEK gene, which encodes a chromatin-binding protein and DNA topology regulator, is upregulated in many types of cancer. DEK has been implicated as an oncogene in breast cancer based on mRNA expression studies, but its functional significance in breast cancer growth and progression has not yet been tested directly. We demonstrate that DEK is highly expressed in breast cancer cells compared with normal tissue, and functionally important for cellular growth, invasion and mammosphere formation. DEK overexpression in non-tumorigenic MCF10A cells resulted in increased growth and motility, with a concomitant downregulation of E-cadherin. Conversely, DEK knockdown in MCF7 and MDA-MB-468 breast cancer cells resulted in decreased growth and motility with upregulation of E-cadherin. The use of DEK-proficient and -deficient breast cancer cells in orthotopic xenografts provided further in vivo evidence that DEK contributes to tumor growth. Activation of the ß-catenin signaling pathway is important for normal and cancer stem cell character, growth and metastasis. We show that DEK expression stimulated, and DEK knockdown repressed ß-catenin nuclear translocation and activity. Importantly, the expression of constitutively active ß-catenin rescued breast cancer invasion defects of DEK knockdown cells. Together, our data indicate that DEK expression stimulates the growth, stem cell character and motility of breast cancer cells, and that DEK-dependent cellular invasion occurs at least in part via ß-catenin activation.


Subject(s)
Breast Neoplasms/pathology , Chromosomal Proteins, Non-Histone/genetics , Neoplastic Stem Cells/pathology , Oncogene Proteins/genetics , Proto-Oncogenes , Signal Transduction/physiology , beta Catenin/physiology , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Cell Survival , Chromosomal Proteins, Non-Histone/physiology , Female , Humans , Mice , Neoplasm Invasiveness , Oncogene Proteins/physiology , Poly-ADP-Ribose Binding Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...