Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Crit Care Med ; 25(2): 140-145, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33707890

ABSTRACT

BACKGROUND: Securing definitive airway with minimal complications is a challenging task for high-volume emergency departments (ED) that deal with patients with compromised airway. MATERIALS AND METHODS: We conducted a prospective observational study between September 2019 and March 2020. Cohort of adults presenting to the ED requiring rapid sequence induction (RSI) were recruited to determine the prevalence and risk factors for the development of aspiration pneumonia(AP) in patients intubated in the ED. RESULTS: During the study period, a total of 154 patients with a mean age of 44.5 years required RSI in the ED. Male (61%) predominance was noted among the study cohorts. We did not find any association between RSI performed in the ED and the risk of developing AP. The first attempt success rate of RSI was 76.7%, and 33(21.4%) patients had immediate adverse events following RSI. Rescue intubation was required for 11(7.1%) patients. The prevalence of AP following RSI in the ED was 13.4%. Endotracheal tube (ET) aspirate pepsin was positive in 45(29.2%) samples collected. The ET aspirate pepsin assay had low sensitivity (44.44%), specificity (73.53%), positive predictive value (18%), and negative predictive value (91%) in predicting the occurrence of AP. On multivariate logistic regression analysis, male gender (AOR: 7.29, 95%CI: 1.51-35.03, p = 0.013) and diabetes mellitus (AOR: 3.75, 95%CI: 1.23-11.51, p = 0.02) were found to be independent risk factors for developing AP. CONCLUSION: We identified male gender and diabetes mellitus to be independent predictors of risk of developing AP after RSI in the ED. ET aspirate pepsin levels proved to be neither sensitive nor specific in the diagnosis of AP. HOW TO CITE THIS ARTICLE: Roshan R, Sudhakar GD, Vijay J, Mamta M, Amirtharaj J, Priya G, et al. Aspiration during Rapid Sequence Induction: Prevalence and Risk Factors. Indian J Crit Care Med 2021;25(2):140-145.

2.
ACS Omega ; 6(2): 1246-1253, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33490783

ABSTRACT

The present study involves the development of citric acid-cross-linked carboxymethyl cellulose (C3CA) scaffolds by a freeze-drying process. Scaffolds were fabricated at different freezing temperatures of -20, -40, or -80 °C to investigate the influence of scaffold pore size on bone regeneration. All three scaffolds were porous in structure, and the pore size was measured to be 74 ± 4, 55 ± 6, and 46 ± 5 µm for -20, -40, and -80 °C scaffolds. The pores were larger in scaffolds processed at -20 °C compared to -40 and -80 °C, indicating the reduction in pore size of the scaffolds with a decrease in freezing temperature. The cytocompatibility, cell proliferation, and differentiation in C3CA scaffolds were assessed with the Saos-2 osteoblast cell line. These scaffolds supported the proliferation and differentiation of Saos-2 cells with significant matrix mineralization in scaffolds processed at -40 °C. Subcutaneous implantation of C3CA scaffolds in the rat model was investigated for its ability of vascularization and new matrix tissue formation. The matrix formation was observed at the earliest of 14 days in the scaffolds when processed at -40 °C while it was observed only after 28 days of implantation with the scaffolds processed at -20 and -80 °C. These results suggest that the citric acid-cross-linked CMC scaffolds processed at -40 °C can be promising for bone tissue engineering application.

3.
RSC Adv ; 8(58): 33314-33324, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-35558639

ABSTRACT

This paper demonstrates a facile strategy for the development of nanosilver decorated polyaniline coated (PAg) paper-based electrodes for the fabrication of solid-state symmetrical supercapacitors. PAg based printing paper was developed through a two-step process involving initial silver nucleation and growth on the paper followed by aniline polymerization. The developed electrically conductive paper exhibited a highly porous structure and excellent mechanical stability. Further symmetrical supercapacitors having the configuration PAg/electrolyte/PAg were fabricated and evaluated for electrochemical performance such as specific capacitance (483 F g-1 and 613 F g-1 in aqueous 1 M H2SO4 and PVA-H2SO4 gel electrolytes respectively), energy density (69.56 and 85.13 W h kg-1), and power density (243.44 and 405.375 W kg-1) and cycling stability (90% of its capacitance retention even after 2000 cycles), exhibiting excellent performance under various bending conditions. All these exciting results suggest that the developed paper-based flexible solid-state energy device can serve as an efficient, sustainable, and low-cost energy storage system for portable microelectronic devices which are expected to revolutionize the perception of energy-storage devices in the electronics industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...