Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Water Sci Technol ; 89(4): 859-872, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38423605

ABSTRACT

A batch-scale electro-Fenton (EF) process was performed using graphite anode and waste battery-based Fe -Mn -Zn/C electrocatalyst coated on low-cost graphite felt cathode. The effectiveness of the EF's performance was evident with around 83.9 + 4.1% removal of 20 mg/L of sodium-dodecyl sulfate surfactant (SDS) at an optimum current density (CD) of 5.0 mA/cm2, Na2SO4 of 0.05 M, initial pH of 7.2, and electrolysis time of 180 min. Moreover, nearly 1.78-fold more removal of SDS was achieved in EF than in the electro-oxidation process operated without any catalyst. The operating cost of 0.35 $ of per m3 per order was needed to treat SDS wastewater. The remediation of SDS follows pseudo-first-order kinetics with a rate constant of 0.0095 min-1. Additionally, 90.3 + 2.1% of SDS and 57 + 2.6% of total organic carbon (TOC) removal was attained during 240 min of treatment time in secondary treated real wastewater; hence, additional 60 min of treatment time is required for effectively treating real wastewater than synthetic wastewater. Thus, EF is effective with battery waste-derived magnetic catalyst for treating wastewater containing SDS, which can lead to achieving sustainable environmental goals.


Subject(s)
Graphite , Water Pollutants, Chemical , Wastewater , Sodium Dodecyl Sulfate , Surface-Active Agents , Water Pollutants, Chemical/analysis , Hydrogen Peroxide , Oxidation-Reduction , Electrodes , Magnetic Phenomena , Zinc
2.
Environ Res ; 245: 117998, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38145735

ABSTRACT

The present work demonstrates a novel strategy of synthesizing iron-biochar (Fe@BCSB) composite made with the waste iron bottle cap and sugar cane bagasse for implementation in the three-dimensional electro-Fenton (3DEF) process. The catalytic ability of the Fe@BCSB composite was explored to remediate the sodium dodecyl sulphate (SDS) surfactant from wastewater at neutral pH. At the optimum operating condition of Fe@BCSB dose of 1.0 g L-1, current density of 4.66 mA cm-2, and Na2SO4 dose of 50 mM, nearly 92.7 ± 3.1% of 20 mg L-1 of SDS abatement was attained during 120 min of electrolysis time. Moreover, the Fe@BCSB showed significant recyclability up to six cycles. Besides, other organics were successfully treated with more than 85% abatement efficiency in the proposed Fe@BCSB-supported 3DEF process. The total operating cost obtained during SDS treatment was around 0.31 US$ m-3 of wastewater. The phytotoxicity test revealed the positive impact of the 3DEF-treated effluent on the germination of the Vigna radiata. The electron paramagnetic resonance conveyed •OH as the prevailing reactive species for the oxidation of SDS in the 3DEF process. Further, about 81.3 ± 3.8% of SDS and 53.7 ± 4.1% of mineralization efficacy were acquired from the real institutional sewage.


Subject(s)
Charcoal , Saccharum , Water Pollutants, Chemical , Iron , Wastewater , Cellulose , Sodium Dodecyl Sulfate , Electrodes , Hydrogen Peroxide , Oxidation-Reduction , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 30(36): 85071-85086, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37227630

ABSTRACT

Ethylene glycol or 1,2-ethanediol (EG) is a persistent and toxic substance in the environment and extensively applied in petrochemical, surfactants, antifreeze, asphalt emulsion paints, cosmetics, plastics, and polyester fiber industries. Degradation of EG by using ultraviolet (UV) activated hydrogen peroxide (H2O2) and persulfate (PS) or persulfate anion (S2O82-) based advanced oxidation processes (AOPs) were explored. The result obtained demonstrate that UV/PS (85.7 ± 2.5%) has exhibited improved degradation efficiency of EG as compared to UV/H2O2 (40.4 ± 3.2%) at optimal operating conditions of 24 mM of EG concentration, 5 mM of H2O2, 5 mM of PS, 1.02 mW cm-2 of UV fluence, and pH of 7.0. Impacts of operating factors, including initial EG concentration, oxidant dosage, reaction duration, and the impact of different water quality parameters, were also explored in this present investigation. The degradation of EG in Milli-Q® water followed pseudo - first order reaction kinetics in both methods having a rate constant of about 0.070 min-1 and 0.243 min-1 for UV/H2O2 and UV/PS, respectively, at optimum operating conditions. Additionally, an economic assessment was also conducted under optimal experimental conditions, and the electrical energy per order and total operational cost for treating per m3 of EG-laden wastewater was observed to be about 0.042 kWh m-3 order-1 and 0.221 $ m-3 order-1, respectively, for UV/PS, which was slightly lower than UV/H2O2 (0.146 kWh m-3 order-1; 0.233 $ m-3 order-1). The potential degradation mechanisms were proposed based on intermediate by-products detected by Fourier transform infrared (FTIR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). Moreover, real petrochemical effluent containing EG was also treated by UV/PS, demonstrating 74.7 ± 3.8% of EG and 40.7 ± 2.6% of total organic carbon removal at 5 mM of PS and 1.02 mW cm-2 of UV fluence. A toxicity tests on Escherichia coli (E. coli) and Vigna radiata (green gram) confirmed non-toxic nature of UV/PS treated water.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Ethylene Glycol , Hydrogen Peroxide/chemistry , Kinetics , Escherichia coli , Oxidation-Reduction , Ultraviolet Rays , Water Purification/methods
4.
Environ Pollut ; 322: 121242, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36758930

ABSTRACT

The current research demonstrates the efficiency of a low-cost MIL-53(Fe)-metal-organic framework (MOF) derived Fe3O4@C (MIL-53(Fe)@Fe3O4@C) electrocatalyst in a batch-scale electro-Fenton (EF) process for the degradation of salicylic acid (SA) from wastewater. The electrocatalyst was prepared from the combination of polyethylene terephthalate (PET) and iron scrap wastes. The result showed 91.68 ± 3.61% degradation of 50 mg L-1 of SA under optimum current density of 5.2 mA cm-2, and pH of 7.0 during 180 min of electrolysis time. The degradation of SA from waste catalyst was similar to the chemical-based MIL-53(Fe)-derived Fe3O4@C (cFe) cathode catalyst. The presence of chloride ions (Cl-) in the water matrix has shown a strong inhibitory effect on the elimination of SA, followed by nitrate (NO3-), and bicarbonate (HCO3-) ions. The multiple cyclic voltammetry (CV) analysis and reusability test of waste cathode catalyst showed only 8.03% drop of current density at the end of the 20th cycle and 5% drop of degradation efficiency after 6th cycle with low leaching of iron. The radical scavenging experiment revealed that the HO• generated via electrochemical generation of H2O2 had a prominent contribution in the removal of SA compared to HO2•/O2•-. Besides, possible catalysis mechanism and degradation pathways were deduced. Furthermore, a satisfactory performance in the treatment of SA spiked in real water matrices was also observed by waste-derived Fe3O4@C cathode catalyst (wFe). Additionally, the total operating cost and toxicity analysis showed that the as-synthesized wFe cathode catalyst could be appropriate for removing organic pollutants from wastewater in the large-scale application.


Subject(s)
Iron , Water Pollutants, Chemical , Iron/analysis , Wastewater , Polyethylene Terephthalates , Plastics , Hydrogen Peroxide/analysis , Salicylic Acid , Water Pollutants, Chemical/analysis , Catalysis , Water/analysis , Oxidation-Reduction , Electrodes
5.
Environ Sci Pollut Res Int ; 30(10): 25427-25451, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35094282

ABSTRACT

The discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment. In this regard, this review articulates the recalcitrant nature of BB and their associated removal technologies. Moreover, the major advantages and limitations of these BB removal technologies along with the recent advancements with regard to the application of innovative materials and strategies have also been elucidated. Therefore, the present review intends to aid the researchers in improving the BB removal efficiency of these technologies, thus alleviating the problem of the release of BB into the environment.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Water Purification , Wastewater , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis , Sewage
6.
J Environ Manage ; 316: 115295, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35597211

ABSTRACT

Advanced oxidation processes (AOPs) are promising technologies for partial or complete mineralization of contaminants of emerging concern by highly reactive hydroxyl, hydroperoxyl, superoxide, and sulphate radicals. Detailed investigations and reviews have been reported for conventional AOP systems that have been installed in full-scale wastewater treatment plants. However, recent efforts have focused on the peroxymonosulphate, persulphate, catalytic ozonation, ultrasonication and hydrodynamic cavitation, gamma radiation, electrochemical oxidation, modified Fenton, and plasma-assisted AOPs. This critical review presents the detailed mechanisms of emerging AOP technologies, their performance for treatment of contaminants of emerging concern, the relative advantages and disadvantages of each technology, and the remaining challenges to scale-up and implementation. Among the evaluated technologies, the modified electrochemical oxidation, gamma radiation, and plasma-assisted systems demonstrated the greatest potential for successful and sustainable implementation in wastewater treatment due to their environmental safety, compatibility, and efficient transformation of contaminants of emerging concern by a variety of reactive species. The other emerging AOP systems were also promising, but additional scale-up trials and a deeper understanding of their reaction kinetics in complex wastewater matrices are necessary to determine the technical and economic feasibility of full-scale processes.


Subject(s)
Water Pollutants, Chemical , Water Purification , Hydrogen Peroxide , Hydroxyl Radical , Oxidation-Reduction , Wastewater/analysis , Water Pollutants, Chemical/analysis
7.
Environ Sci Pollut Res Int ; 29(41): 61783-61802, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34231137

ABSTRACT

Petrochemical industry is one of the major and rapidly growing industry that generates a variety of toxic and recalcitrant organic pollutants as by-products, which are not only harmful to the aquatic animals but also affects human health. The majority of the components of petrochemical wastewater (PW) are carcinogenic, genotoxic and phytotoxic in nature; hence, this complex wastewater generated from different petrochemical processes should be efficiently treated prior to its disposal in natural water bodies. The established technologies like advanced oxidation, membrane bioreactor, electrocoagulation and activated sludge process employed for the treatment of PW are highly energy intensive and incurs high capital and operation cost. Moreover, these technologies are not effective in completely eliminating petroleum hydrocarbons present in PW. Thus, to reduce the energy requirement and also to transform the chemical energy trapped in these organic matters present in this wastewater into bioelectricity and other value-added products, microbial electrochemical technologies (METs) can be efficaciously used, which would also compensate the treatment cost by transforming these pollutants into bioenergy and valuables. In this regard, this review elucidates the feasibility and application of different METs as an appropriate alternative for the treatment of PW. Furthermore, the numerous bottlenecks towards the real-life application and commercialization of pioneering METs have also been articulated.


Subject(s)
Environmental Pollutants , Petroleum , Water Pollutants, Chemical , Bioreactors , Humans , Sewage , Waste Disposal, Fluid , Wastewater/analysis , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...