Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 59(40): 6084-6087, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37128969

ABSTRACT

Herein, we demonstrate a facile method for the introduction of nitrogen in the lattices of nickel nanoparticles to form NiNx (x = 0.13, 0.20, 0.27). X-ray absorption spectroscopy reveals the contraction of the Ni-Ni bond and modulated coordination environment after nitrogen introduction. The NiN0.20 required 87 mV overpotential for -10 mA cm-2 cathodic current density in simulated seawater. The density functional theory calculations revealed favorable EH2Oads and ΔGHads after N-introduction.

2.
Phys Chem Chem Phys ; 24(4): 2582-2591, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35029266

ABSTRACT

Black phosphorus (BP) is unique among 2D materials due to its anisotropic puckered structure. It has been used as a multifunctional catalyst for various purposes. In this study, we performed first principles molecular dynamics simulations to understand the water-splitting reaction on a bi-layer BP surface. We focused on the site-specific aqueous reactivity of the buckled surface. A difference in the axis-dependent reactivity is observed owing to edge defects and exposed sites. Thus, we believe that BP edges, which significantly affect the interfacial water or organic solvent molecules, must exhibit very different edge-dependent reactivity. Experiments suggested the increasing catalytic efficiency of undisturbed BP in the order bulk, few-layered BP, and BP quantum dots. We choose three active sites to investigate the mechanistic details of the OER: the zigzag (ZZ), armchair (AC), and bulk sites. This study will provide insight into the enhanced catalytic activity when more edges are exposed as the active surface. We hope to clarify the reactive pathway in an aqueous solution supported by bi-layer BP by exploring the two different mechanisms for forming the OOH* complex. We explore and report two mechanisms: a simple push-pull reaction for oxygen-oxygen bond formation, the nucleophilic attack by formed OH- and an attack by a water molecule. The free energy barriers procured for mechanism 1 taking place at the zigzag, armchair, and bulk sites are 7.59 ± 0.33, 9.04 ± 0.01, and 12.80 ± 0.09 kcal mol-1, respectively. For mechanism 2 the free energy barriers are 7.62 ± 0.11, 9.15 ± 0.16, and 11.63 ± 0.11 kcal mol-1 for the ZZ, AC, and bulk sites. The interlink between both the mechanisms is established concerning the reported free energy barriers for OOH* formation. The ZZ site is found to lower the activation barrier for the rate-determining step, followed by the AC and bulk.

3.
J Phys Chem B ; 125(42): 11697-11708, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34664957

ABSTRACT

The hybrid heterostructure of the tri-s-triazine form of graphitic carbon nitride (g-C3N4), a stable two-dimensional material, results from intricate layer formation with graphene. In this material, g-C3N4, an amphiphilic material, stabilizes Pickering emulsions as an emulsifier and can effectively disperse graphene. Due to the various technological applications of the hybrid nanosheets in an aqueous environment, it is essential to study the interaction of water molecules with graphene and g-C3N4 (Gr/g-C3N4)-combined heterostructure. Although few studies have been performed signifying the water orientation in the interfacial layer, we find that there is a lack of detailed studies using various dynamical and structural properties of the interfacial water molecules. The interface of the Gr/g-C3N4 hybrid structure, one of the rarely found amphiphilic interfaces (on the g-C3N3 side), is appropriate for exploring the water affinity due to the availability of heterogeneous interfacial aqueous interactions. We adopted classical molecular dynamics simulations using two models for water molecules to study the structure and dynamics of an aqueous interface. We have correlated the structural properties to dynamics and spectral properties to understand the overall behavior of the amphiphilic interface. Our results branch into two significant hydrogen bond (HB) properties in HB count and HB strength among the water molecules in the different layers. The HB counts in the different layers of water are correlated using the average distance distribution (PrO4), tetrahedral order parameters, HB donor/acceptor count, and total HBs per water molecule. A conspicuous difference is found in the HB count and related dynamics of the system. The HB lifetime and diffusion coefficient hint at the equivalent strength of HBs in the different layers. All the findings conclude that the amphiphilicity of the Gr/g-C3N4 interface can help in understanding various interfacial physical and chemical processes.


Subject(s)
Graphite , Hydrogen Bonding , Molecular Dynamics Simulation , Water
4.
J Phys Chem B ; 125(27): 7527-7536, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34213344

ABSTRACT

The structure of black phosphorous (BP) is similar to the honeycomb arrangement of graphene, but the layered BP is found to be buckled and highly anisotropic. The buckled surface structure affects interfacial molecule mobility and plays a vital role in various nanomaterial applications. The BP is also known for wettability, droplet formation, stability, and hydrophobicity in the aqueous environment. However, there is a gap concerning the structural and dynamical behavior of water molecules, which is available in abundance for other monoatomic and polyatomic two-dimensional (2D) materials. Motivated by the technological importance, we try to bridge the gap by explaining the surface anisotropy-facilitated behavior of water molecules on bilayer BP using classical and first principles molecular dynamics (MD) simulations. From our classical MD study, we find three distinct layers of water molecules. The water layer closest to the interface is L1, followed by L2 and L3/bulk perpendicular to the BP surface. Water molecules in the L1 layer experience some structural disintegration in hydrogen bond (HB) phenomena compared to the bulk. There is a loss of HB donor-acceptor count per water molecule. The average HB count decreases because of an elevated rate of HB formation and deformation; this would affect the dynamic properties in terms of HB lifetime. Therefore, we observe the reduced lifetime of HB in the layer in close contact with BP, which again complements our finding on the diffusion coefficient of water molecules in distinct layers. Water diffuses relatively faster with diffusion coefficient 3.25 × 10-9 m2 s-1 in L1, followed by L2 and L3. The BP layer shows moderate hydrophobic nature. Our results also indicate the anisotropic behavior as the diffusion along the x-direction is faster than that along the y-direction. The gap in the slope of the x and y components of mean-squared displacement (MSD) complements the pinning effect in an aqueous environment. We observe blue-shifted and red-shifted libration and O-H stretching modes from the calculated power spectra for the L1 water molecules compared to the L2 and L3 molecules from first principles MD simulations. Our analysis may help understand the physical phenomena that occur during the surface wetting of the predroplet formation process observed experimentally.


Subject(s)
Water , Anisotropy , Hydrogen Bonding , Molecular Dynamics Simulation
5.
ACS Omega ; 6(12): 8356-8364, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33817496

ABSTRACT

The ambiguity in the behavior of water molecules around hydrophobic solutes is a matter of interest for many studies. Motivated by the earlier results on the dynamics of water molecules around tetramethylammonium (TMA) cation, we present the effect of temperature on the structure and angular jumps of water due to hydrophobicity using first principles molecular dynamics simulations. The average intermolecular distance between the central oxygen and four nearest neighbors is found to be the highest for water molecules in the solvation shell of TMA at 400 K, followed by the same at 330 K. The hydrogen bond (HB) donor-acceptor count, HB per water molecule, and tetrahedral order parameter suggests the loss of tetrahedrality in the solvation shell. Elevated temperature affects the tetrahedral parameter in local regions. The HB jump mechanism is studied for methyl hydrogen and water molecules in the solvation shell. Observations hint at the presence of dangling water molecules in the vicinity of the hydrophobic cation, and no evidence is found for the enhanced structural ordering of nearby water molecules.

6.
J Comput Chem ; 42(16): 1138-1149, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33851446

ABSTRACT

The study of the water-splitting process, which can proceed in 2e- as well as 4e- pathway, reveals that the process is entirely an uphill process, and the third step, that is, the oxooxo bond formation is the rate-determining step. The kinetic barrier of the oxygen evolution reaction (OER) on the 2D material catalysts in the presence of explicit solvents is scarcely studied. Here, we investigate the dynamics of the OER on the undoped graphene and the activation energy barrier of each step using first principles molecular dynamics simulations. Here we provide a detailed analysis of the kinetics of all the 4e- transfer steps of OER on the graphene surface. We also compare the accuracy of one of the density functional theory (DFT) functionals and density functional based tight binding (DFTB) method in explaining the OER steps. The comparative study reveals that DFTB can be used for performing metadynamics simulations quipped with much less computational cost than DFT functionals. By both Perdew-Burke-Ernzerhof and DFTB methods, the third step is revealed to be the rate-determining step with an energy barrier of 21.19 ± 0.51 and 20.23 ± 0.20 kcal mol-1 , respectively. DFTB gives an impression of being successful in predicting the energy barriers of OER in 4e- transfer pathway and comparable to the DFT method, and we would like to extend the use of DFTB for further studies with a sizable and complex system.

7.
ACS Omega ; 6(8): 5368-5378, 2021 Mar 02.
Article in English | MEDLINE | ID: mdl-33681576

ABSTRACT

Molecular oxygen and hydrogen can be obtained from the water-splitting process through the electrolysis technique. However, harnessing energy is very challenging in this way due to the involvement of the 4e- reaction pathway, which is associated with a substantial amount of reaction barrier. After the report of the first N-doped graphene acting as an oxygen reduction reaction catalyst, the scientific community set out on exploring more reliable doping materials, better material engineering techniques, and developing computational models to explain the interfacial reactions. In this study, we modeled the graphene surface with four different nonmetal doping atoms N, B, P, and S individually by replacing a carbon atom from one of the graphitic positions. We report the mechanism of the complete catalytic cycle for each of the doped surfaces by the doping atom. The energy barriers for individual steps were explored using the biased first-principles molecular dynamics simulations to overcome the high reaction barrier. We explain the active sites and provide a comparison between the activation energy obtained by the application of two computational methods. Observing the rate-determining step, that is, oxo-oxo bond formation, S-doped graphene is the most effective. In contrast, N-doped graphene seems to be the least useful for oxygen evolution catalysis compared to the undoped graphene surface. B-doped graphene and P-doped graphene have an equivalent impact on the catalytic cycle.

8.
J Mol Graph Model ; 103: 107818, 2021 03.
Article in English | MEDLINE | ID: mdl-33333423

ABSTRACT

The phenomenon of proton transfer from water to six N-heterocyclic anions and free energy landscapes of this process are studied using both electronic structure calculations and first principles molecular metadynamics simulations. Our investigation involves microhydrated and aqueous phase interaction of water with six aromatic heterocyclic anions relevant to chemistry and biology: imidazolide, pyrrolide, benzimidazolide, 2-cyanopyrrolide, indolide, and indazolide. The basic structures of all these heterocyclic anions differ by substituted functional groups as well as fused rings. We study the proton transfer reaction and the minimum number of required water molecules for the reaction in hydrated microclusters. We find out that at least four water molecules are necessary for hydrated clusters to facilitate the intracluster proton transfer reaction from water to anions except for pyrrolide, for which this magic number is 3. To obtain the reaction free energy and activation barrier of the proton transfer process in an aqueous solution, the metadynamics method based first principles molecular dynamics simulations were performed. The complete proton transfer was observed in aqueous solutions for all the anions. The water molecule directly involved in proton transfer becomes acidic due to the cooperative effect of neighboring water molecules. From the metadynamics simulation, we obtain the values of activation barrier for the proton transfer processes from neutral water to anions, and the highest activation barrier is obtained for benzimidazolide, whereas the lowest activation barrier is obtained for pyrrolide. The structures and free energy profiles of the process for all the anions are discussed, and a comparative outlook of the study is presented here.


Subject(s)
Protons , Water , Anions , Entropy , Molecular Dynamics Simulation
9.
J Phys Chem A ; 124(29): 6039-6049, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32574045

ABSTRACT

We present the first-principles molecular dynamics simulations of water molecules using two different levels of density functional theory within the Kohn-Sham scheme, namely, Becke-Lee-Yang-Parr (BLYP) and Perdew-Burke-Ernzerhof (PBE) with dispersion corrections such as D2 as well as D3 versions of Grimme dispersion correction and dispersion-corrected atom-centered potential. Our aim is to provide a comparative study of these functionals in explaining the thermophysical and structural properties along with nondiffusive jump dynamics of water molecules concerning the experimental data. The hydrogen bonding phenomenon is dependent on polarity, bonding, as well as nonbonding interactions, which requires thorough parametrization. Since hydrogen bonding is responsible for several properties in the water, we investigate the effect of dispersion corrections on the hydrogen bond jump dynamics. BLYP and PBE functionals are well-known for overestimating the spatial structure and underestimating the density and diffusivity. Thus, dispersion corrections are introduced to generate a well-structured and adequately dense equilibrated liquid water system. Here, we have reported the density values of water obtained from different density functionals and also verified the trend with other thermophysical phenomena such as compressibility and cohesive energy. The behavior of simulated water systems is further explained by analyzing various structural properties and hydrogen bond jump dynamics.

10.
J Phys Chem B ; 123(41): 8753-8766, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31545605

ABSTRACT

Till now, there has been ambiguity about the structural heterogeneity inside a solute solvation shell and the dynamical response of the surrounding solvent molecules. To address the dynamics and spectral response of solvent molecules, we performed first-principles molecular dynamics simulations for the comprehensive study of water's hydroxyl stretch frequency evolution due to environmental variations (also called "spectral diffusion") in the vicinity of a hydrophobe, tetramethylammonium (TMA) cation. The N-Ow radial distribution function (RDF), spatial distribution function (SDF), and combined distribution function (CDF) were calculated to provide information about the arrangement of water molecules around TMA. In the probability distribution plot of the cosine of the angle (θ) between Ow-Hw and NTMA-Ow bond vectors, the hydrogen atoms are observed being oriented toward TMA and the oxygen atoms aligned away. The decaying dynamics of the orientation autocorrelation function (OACF) reveals the reorientation time is more inside the solvation shell (4.1 ps) as compared to bulk (2.8 ps), matching with the trend obtained from water's orientational dynamics in tetraalkylammonium salts. Wavelet transform of the obtained trajectory was used to calculate the time-dependent vibrational stretching frequencies of the OH modes of water molecules. The normalized frequency distribution in the aqueous solvation shell of TMA, tagging a particular water molecule within the N-Ow cutoff distance 5.5 Å, displays an intense peak at 3661 cm-1 representing non-hydrogen bonded or dangling or free OH modes. Simulations around aromatic solutes and Raman-MCR studies in the hydration shell of hydrophobic TBA reported a distinctive dangling OH band at 3660 cm-1 (range: 3661 ± 2 cm-1). Besides dangling water molecules in the first hydration layer of ammonium nitrogen, few OH modes are strongly hydrogen-bonded having an average frequency at 3300 cm-1. The predominance of dangling hydroxyl modes around apolar hydrophobic TMA was further explored by comparing the dangling lifetime (∼0.68 ps) with the lifespan of hydrogen bonded OH modes (∼0.48 ps). At our simulation temperature 330 K, a significant fraction of the water molecules in the vicinity of TMA ion are free or dangling, and a few of them form an ordered structure with enhanced hydrogen bonding. Structural analysis, orientation correlation, frequency fluctuations, dangling, and hole dynamics calculations provide the evidence of the existence of dangling OH modes dominating over highly ordered strong hydrogen bonded structure in the cationic TMA solvation shell at an elevated temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...