Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 171: 393-400, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37776810

ABSTRACT

High-density polythene (HDPE) is difficult to separate from food packaging waste for recycling because the packaging occasionally has multilayer plastic labels attached. Solvents are employed in the current separation techniques to remove undesirable layers from HDPE substrates. The possibility of separating HDPE via the impact-delamination phenomenon was explored both theoretically and experimentally. Using the cohesive zone model (CZM), the decohesion of layers in a model two-layer laminate made of HDPE and LDPE layers was studied theoretically. According to this study, stress waves emerge and severely damage the adhesion between the layers as a cutting blade strikes the laminate at speeds greater than 40 m/s. The damage can be enhanced by increasing the strike velocity and the apex radius of the blade. These findings show that a novel plastic delaminator that can cut and delaminate the laminates simultaneously can be designed. The proposed machine will feature two sets of blades with varying edge apex radii. One set of blades can be designed to cause the most adhesion damage while the other blades cut the laminate. This unique combination of cutting and delamination operations has several benefits, including less solvent waste and downstream processes, greater environmental friendliness, and faster HDPE separation. Laminates from HDPE milk bottles were cut using a high-speed cutter-blender with six blades to test the predicted results. The cut HDPE flakes were separated pneumatically. According to FTIR analysis and SEM, only a trace of adhesive was present on the cut and separated HDPE flakes.

2.
Langmuir ; 34(9): 3068-3075, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29420049

ABSTRACT

Hydrophobic ionic liquid ferrofluids (ILFFs) are studied for use in electrospray thrusters for microsatellite propulsion under nonatmospheric and in high-temperature environments. We synthesized a hydrophobic ILFF by dispersing sterically stabilized γ-Fe2O3 nanoparticles (NPs) in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. A diblock copolymer, C4-RAFT-AA10-DEAm60, was synthesized to facilitate multipoint bidentate anchoring to the NP through the acrylic acid block. The DEAm60 layer was incorporated to generate steric repulsion between particles to protect against the aggregation of magnetized particles arising from dipole-dipole attraction. The effect of shearing and variation in the magnetic field strength on the steric repulsion was examined using the DLVO theory. The effect of varying the magnetic field strength and particle concentration on the viscoelastic properties of the ferrofluid was evaluated using rheometry. The viscosity of the ferrofluid increased with the magnetic field strength, indicating that the magnetized particles assembled into a structure. The level of straining required to break down the structure formed by the magnetized particles increased with the magnetic field strength and particle concentration. The absence of particle interlocking during shearing was indicated by the smooth viscosity versus shear rate traces. The DLVO analysis showed that increasing the magnetic attraction between the particles causes the DEAm60 brush layers on the particles to overlap more, resulting in an increase in the steric repulsion. As overlapping increases, osmotic repulsion is caused before progressing to a strong elastic repulsion. The effect of the polymer solubility and particle interaction due to hydrodynamic forces on the steric repulsion was also analyzed.

3.
Blood ; 130(23): 2453-2462, 2017 12 07.
Article in English | MEDLINE | ID: mdl-29074499

ABSTRACT

Clot retraction refers to the process whereby activated platelets transduce contractile forces onto the fibrin network of a thrombus, which over time increases clot density and decreases clot size. This process is considered important for promoting clot stability and maintaining blood vessel patency. Insights into the mechanisms regulating clot retraction at sites of vascular injury have been hampered by a paucity of in vivo experimental models. By pairing localized vascular injury with thrombin microinjection in the mesenteric circulation of mice, we have demonstrated that the fibrin network of thrombi progressively compacts over a 2-hour period. This was a genuine retraction process, as treating thrombi with blebbistatin to inhibit myosin IIa-mediated platelet contractility prevented shrinkage of the fibrin network. Real-time confocal analysis of fibrinolysis after recombinant tissue-type plasminogen activator (tPA) administration revealed that incomplete proteolysis of fibrin polymers markedly facilitated clot retraction. Similarly, inhibiting endogenous fibrinolysis with tranexamic acid reduced retraction of fibrin polymers in vivo. In vitro clot retraction experiments indicated that subthreshold doses of tPA facilitated clot retraction through a plasmin-dependent mechanism. These effects correlated with changes in the elastic modulus of fibrin clots. These findings define the endogenous fibrinolytic system as an important regulator of clot retraction, and show that promoting clot retraction is a novel and complementary means by which fibrinolytic enzymes can reduce thrombus size.


Subject(s)
Clot Retraction , Fibrinolysis , Actomyosin/metabolism , Animals , Blood Platelets/drug effects , Blood Platelets/metabolism , Fibrin/metabolism , Fibrinolysis/drug effects , Humans , Male , Mice , Nonmuscle Myosin Type IIA/metabolism , Thrombosis/diagnostic imaging , Thrombosis/metabolism , Thrombosis/pathology , Tissue Plasminogen Activator/metabolism , Tissue Plasminogen Activator/pharmacology , Tranexamic Acid/pharmacology
4.
J Hazard Mater ; 283: 314-20, 2015.
Article in English | MEDLINE | ID: mdl-25305361

ABSTRACT

When NH4NO3 emulsions are used in blast holes containing pyrite, they can exothermally react with pyrite, causing the emulsion to intensively heat and detonate prematurely. Such premature detonations can inflict fatal and very costly damages. The mechanism of heating of the emulsions is not well understood though such an understanding is essential for designing safe blasting. In this study the heating of an emulsion in model blast holes was simulated by solving the heat equation. The physical factors contributing to the heating phenomenon were studied using microscopic and calorimetric methods. Microscopic studies revealed the continuous formation of a large number of gas bubbles as the reaction progressed at the emulsion-pyrite interface, which made the reacting emulsion porous. Calculations show that the increase in porosity causes the thermal conductivity of a reacting region of an emulsion column in a blast hole to decrease exponentially. This large reduction in the thermal conductivity retards heat dissipation from the reacting region causing its temperature to rise. The rise in temperature accelerates the exothermic reaction producing more heat. Simulations predict a migration of the hottest spot of the emulsion column, which could dangerously heat the primers and boosters located in the blast hole.


Subject(s)
Ammonium Compounds/chemistry , Hot Temperature , Nitrates/chemistry , Soil Pollutants/chemistry , Soil/chemistry
5.
Langmuir ; 26(2): 684-91, 2010 Jan 19.
Article in English | MEDLINE | ID: mdl-19754069

ABSTRACT

We have examined the nucleation of chemically generated nitrogen gas bubbles in microheterogeneous systems, using optical microscopy on a model system consisting of a single liquid-liquid interface. Results clearly show that bubble nucleation occurs in both the aqueous and oil phases, despite the nitrogen production reaction being a purely aqueous phase process. A theoretical model is developed which describes the time evolution of the nitrogen concentration profile, and this reveals that bubbles in the oil are a result of homogeneous nucleation of dissolved N(2) transported across the interface into a (supersaturated) diffusion layer. We further show that bubble nucleation in the oil can be inhibited or eliminated by adding water-soluble surfactants, which facilitates aqueous phase bubble nucleation and then acts as highly effective nitrogen sinks, severely reducing the flux of dissolved gas across the water-oil interface.


Subject(s)
Gases/chemistry , Models, Theoretical , Nitrogen/chemistry , Water/chemistry , Diffusion , Microscopy , Oils/chemistry , Surface-Active Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...