Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37298542

ABSTRACT

Methotrexate (MTX) is a folic acid analog and has been used to treat a wide variety of malignant and non-malignant diseases. The wide use of these substances has led to the continuous discharge of the parent compound and its metabolites in wastewater. In conventional wastewater treatment plants, the removal or degradation of drugs is not complete. In order to study the MTX degradation by photolysis and photocatalysis processes, two reactors were used with TiO2 as a catalyst and UV-C lamps as a radiation source. H2O2 addition was also studied (absence and 3 mM/L), and different initial pHs (3.5, 7, and 9.5) were tested to define the best degradation parameters. Results were analyzed by means of ANOVA and the Tukey test. Results show that photolysis in acidic conditions with 3 mM of H2O2 added is the best condition for MTX degradation in these reactors, with a kinetic constant of 0.028 min-1. According to the ANOVA test, all considered factors (process, pH, H2O2 addition, and experimentation time) caused statistically significant differences in the MTX degradation results.


Subject(s)
Methotrexate , Water Pollutants, Chemical , Photolysis , Hydrogen Peroxide/chemistry , Ultraviolet Rays , Titanium/chemistry , Wastewater , Water Pollutants, Chemical/chemistry , Oxidation-Reduction , Catalysis
2.
Article in English | MEDLINE | ID: mdl-36361104

ABSTRACT

Phenol is used in the manufacturing process of phenolic resins from which residues remain that must be sent for confinement. For that reason, in this study, the wastewater of a resin factory was analyzed to isolate the bacteria present, identify them by molecular methods and finally evaluate their impact on bioremediation treatment. A total of 15 bacteria were isolated, of these, eight belong to the genus Bacillus spp. All bacteria were individually multiplied and inoculated in clusters in 15 L reactors which were carefully monitored for pH, electrical conductivity, chemical oxygen demand and temperature. The acquired data were analyzed using ANOVA with repeated measurements. The first test revealed that native bacterial communities reduce the phenol content by up to 20% and COD by 49%, which is significant with respect to the reactor not being inoculated with bacteria. Furthermore, when a mathematical model was applied to the reactors, it was shown that the bacteria require an adaptation time of approximately 100 h. A second test where the inoculation was interspersed with the addition of lime as a flocculant showed that, even though the reduction in phenol and COD was lower than in the previous test, the difference between treatments and control is statistically significant (α ≤ 0.05).


Subject(s)
Phenol , Wastewater , Phenol/chemistry , Biodegradation, Environmental , Wastewater/microbiology , Phenols , Bacteria , Bioreactors/microbiology , Waste Disposal, Fluid/methods
3.
J Environ Manage ; 318: 115545, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35752006

ABSTRACT

Research has proven the adaptation of nitrite-oxidizing bacteria to unfavorable environmental conditions, and this work presents a novel concept to prevent nitrite oxidation during partial nitrification in wastewater. The approach is based on the real-time updating of mathematical models of the process to search for optimal set-points of pH and oxygen concentration in a continuous activated sludge reactor with a high sludge age (20.3 days). A heuristic optimization technique by 13 optimum set-points simultaneously maximized the degree of ammonia oxidation (α) and nitrite accumulation (ß), achieving an (α + ß) = 190% per day. The activated sludge reactor was conducted for 780 days under three control schemes: open-loop control, fuzzy model supervisory control and phenomenological supervisory control. The phenomenological supervisory control system achieved the best results, simultaneously reaching 95% ammonium oxidation and 90% nitrite accumulation. The Haldane kinetics were analyzed using steady-state concentrations of all nitrogen species, concluding that the simultaneous maximization of α + ß led to selecting set-points at the extreme values of the following ranges: pH = 7.5-8.5 and DO = 0.8-1.0 mg O2/L, which enabled the inhibition of one nitrifier species. At the same time, the other one was relieved from inhibition. The 16sRNA assays indicated that the nitrite-oxidizing bacteria presence (genera Nitrobacter and Nitrospira) shifted from 32% to less than 8% after 280 days of continuous operation with optimal pH and oxygen set-points.


Subject(s)
Nitrites , Sewage , Bacteria , Bioreactors/microbiology , Hydrogen-Ion Concentration , Nitrification , Oxidation-Reduction , Oxygen , Sewage/microbiology
4.
Environ Sci Pollut Res Int ; 29(28): 42251-42274, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34741739

ABSTRACT

The following work provides a perspective on the degradation of cytostatic pollutants through TiO2 heterogeneous photocatalysis. Cytostatic drugs are emerging pollutants used for cancer treatment found in hospital and domestic wastewater. Small amounts of cytostatic pollutants may pose severe health problems in human beings, animals, and plants after prolonged contact. This research presents a general review of some water treatment methods, such as aerobic activated sludge, enzymatic degradation, nanofiltration and chlorination, that have been used for the degradation or elimination of cytostatic drugs in wastewater. In recent years, photocatalysis has become important to solve this problem; these advanced oxidation process uses pure and modified TiO2 to degrade cytostatic contaminants and convert them into non-harmful substances or to eliminate them completely. This work contains a comprehensive review of the heterogeneous photocatalysis process and mechanism, and its application on the removal of cytostatic pollutants. Even if research on the topic is still scarce, this literature review provides interesting highlights on the scope of the research field, and the path such research could follow.


Subject(s)
Cytostatic Agents , Environmental Pollutants , Water Pollutants, Chemical , Animals , Catalysis , Titanium , Wastewater , Water Pollutants, Chemical/analysis
5.
Environ Sci Pollut Res Int ; 29(41): 61594-61607, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34533752

ABSTRACT

The following work provides a perspective on the potential application of solar heterogeneous photocatalysis, which is a nonselective advanced oxidation process considered as a sustainable technology, to assist in arsenic removal from water, which is a global threat to human health. Heterogeneous photocatalysis can oxidize trivalent arsenic to pentavalent arsenic, decreasing its toxicity and easing its removal with other technologies, such as chemical precipitation and adsorption. Several lab-scale arsenic photocatalytic oxidation and diverse solar heterogeneous photocatalytic operations carried out in different reactor designs are analyzed. It was found out that this technology has not been translated to operational pilot plant scale prototypes. General research on reactors is scarce, comprising a small percentage of the photocatalysis related scientific literature. It was possible to elucidate some operational parameters that a reactor must comply to operate efficiently. Reports on small-scale application shed light that in areas where other water purification technologies are economically and/or technically not suitable, and the solar energy is available, shed light on the fact that solar heterogeneous photocatalysis is highly promissory within a water purification process for removal of arsenic from water.


Subject(s)
Arsenic , Water Pollutants, Chemical , Water Purification , Catalysis , Humans , Sunlight , Titanium , Water , Water Pollutants, Chemical/analysis
6.
J Environ Manage ; 273: 111150, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32768763

ABSTRACT

The main challenge for partial nitrification is to reach stable nitrite accumulation, which strongly depends on the nitrite-oxidizing bacteria (NOB) growth in the reactor. The on-line estimation of active biomass may enhance the decision-making process to maintain a high nitrite accumulation in the reactor. In this work, we propose an active biomass estimator based on ASM1 and on-line oxygen uptake rate measurements (OUR-E) in a sequencing batch reactor. In order to validate the OUR-E, two operating scenarios were applied during 200 days of operation: unfavorable (sludge retention time (SRT) = 40 d, pH = 7.6, dissolved oxygen (DO) = 2 mg/L) and favorable for partial nitrification (SRT = 10 d, pH = 8.5, DO = 2 mg/L). Furthermore, a second estimation method based on off-line measurements of N-species concentrations (Nsp-E) was implemented to evaluate the performance of the OUR-E. The OUR-E was able to predict a reduction in the NOB active fraction from 10.3% to 1.6% with nitrite accumulation over 80% when we shifted the operating scenario. Although both estimators predicted similar results, the OUR-E showed a better prediction quality than the Nsp-E, according to Theil's coefficient of inequality.


Subject(s)
Bioreactors , Nitrification , Ammonia , Biomass , Nitrites , Oxidation-Reduction , Sewage
7.
Chemosphere ; 207: 278-284, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29803876

ABSTRACT

The spherical agglomeration technique (SAT) has emerged as an innovative alternative for the removal of heavy metals from water at optimum levels of surfactant addition. This technique has achieved high removal efficiencies. In the present study, Yucca decipiens extracts were applied as the biosurfactant for the removal of heavy metals from groundwater of a mining community using SAT. Aqueous models were generated to explain the removal of copper and lead in solutions. It was possible to remove 99.96% and 99.62% respectively. The highest concentrations of copper and lead 209.5 and 2 mg L-1, respectively, were observed at a waterhole in the mining community. This sample was used to test the efficiency of SAT, using optimal conditions of the models. It was possible to remove 99.22% of copper and 91.50% of lead present in the groundwater. High concentrations of sodium and calcium were found. To reduce the residual sodium concentration, the pH was decreased from 11 to 9.5. 99.84% of copper and only 93.49% of lead were removed; the remaining concentrations did not exceed the limit of Mexican regulations (NOM-001-SEMARNAT-1996, 1996). It was demonstrated that the Yucca extracts are effective or the treatment of water with high concentrations of heavy metals under the conditions of SAT.


Subject(s)
Copper/isolation & purification , Groundwater/chemistry , Lead/isolation & purification , Organic Chemicals/chemistry , Plant Extracts/chemistry , Surface-Active Agents/chemistry , Yucca/chemistry , Mining
8.
Chemistry ; 23(12): 2867-2876, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-27992673

ABSTRACT

Heterogeneous catalysts that can absorb light over the solar range are ideal for green photocatalysis. Recently, attention has been directed towards the generation of novel solar-light photocatalysts, in particular, metal-free polymers. Herein, it is demonstrated that a metal-free, nonconjugated, anthraquinone-based copolymer (poly[1,4-diamine-9,10-dioxoanthracene-alt-(benzene-1,4-dioic acid)] (COP)) with a strong absorption in the visible region is effective as a sunlight heterogeneous photocatalyst. As a proof of concept, it has been used to mineralize 2,5-dichlorophenol (2,5-DCP) in water under air and sunlight irradiation. The photocatalytic efficiency of COP compares well with that of TiO2 -P25 when the reaction is carried out in a solar photoreactor in acid medium. Steady-state and time-resolved (absorption and emission) studies performed on COP suspended in 6:4 DMF/H2 O have provided valuable information about the COP species generated under different pH conditions. Steady-state absorption and fluorescence data are consistent with the existence of a tautomeric equilibrium between the 9,10-keto and 1,10-iminoketo quinoid forms for the anthraquinone in the ground state. Moreover, in basic media, transient absorption measurements showed the presence of two bands ascribed to the tautomeric triplet excited states, whereas only one of the triplets was observed in acid medium. A mechanism for the photocatalyzed degradation of 2,5-DCP by COP is proposed on the basis of these observations.

9.
Anaerobe ; 13(2): 65-73, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17360200

ABSTRACT

The toxic effects of heavy metals have been extensively documented in different organisms. Nevertheless, a lack of information exists with regard to this topic in the case of autochthonous microorganism communities. The aim of this study was to evaluate the toxic effects of zinc on the anaerobic microorganisms present in the sediment and anoxic water of Zimapán Reservoir (Mexico), with particular focus on dissimilatory sulphate reducing bacteria. In the laboratory, a system of enrichment microcosms was set up with sediment and water from the reservoir. ATP, protein, carbohydrates and lactate and alcohol dehydrogenase activity were determined. The physicochemical parameters of the reservoir were evaluated over the course of one year. Sulphate reduction occurred in the reservoir throughout the year, but was most pronounced at the end of the wet season and during winter. In the field, increases in the rate of sulphate reduction coincided with the lowest levels of total phosphorus and hydrosoluble organic carbon. Zinc enrichment was observed to modify protein and carbohydrate content as well as to affect lactate and alcohol dehydrogenase activity. All responses followed a zinc concentration-response relationship and were dependent on reservoir physicochemical parameters. ATP content was used as a biomarker to evaluate the sublethal toxic effects of zinc. The acceptable threshold concentration of zinc in the aquatic and sediment enrichment microcosms was determined to be 0.06mgZn/L and 711.1mgZn/kg, respectively.


Subject(s)
Bacteria, Anaerobic/drug effects , Geologic Sediments/microbiology , Water Microbiology , Zinc/toxicity , Adenosine Triphosphate/analysis , Alcohol Dehydrogenase/analysis , Bacteria, Anaerobic/chemistry , Bacteria, Anaerobic/enzymology , Bacterial Proteins/analysis , Carbohydrates/analysis , Carbon/analysis , Dose-Response Relationship, Drug , L-Lactate Dehydrogenase/analysis , Mexico , Oxidation-Reduction , Phosphorus/analysis , Seasons , Sulfates/metabolism , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...