Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 159(4)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37497818

ABSTRACT

Machine learning (ML) methods are of rapidly growing interest for materials modeling, and yet, the use of ML interatomic potentials for new systems is often more demanding than that of established density-functional theory (DFT) packages. Here, we describe computational methodology to combine the CASTEP first-principles simulation software with the on-the-fly fitting and evaluation of ML interatomic potential models. Our approach is based on regular checking against DFT reference data, which provides a direct measure of the accuracy of the evolving ML model. We discuss the general framework and the specific solutions implemented, and we present an example application to high-temperature molecular-dynamics simulations of carbon nanostructures. The code is freely available for academic research.

2.
J Phys Chem A ; 126(19): 3043-3056, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35522778

ABSTRACT

We present a systematic study of two widely used material structure prediction methods, the Genetic Algorithm and Basin Hopping approaches to global optimization, in a search for the 3 × 3, 5 × 5, and 7 × 7 reconstructions of the Si(111) surface. The Si(111) 7 × 7 reconstruction is the largest and most complex surface reconstruction known, and finding it is a very exacting test for global optimization methods. In this paper, we introduce a modification to previous Genetic Algorithm work on structure search for periodic systems, to allow the efficient search for surface reconstructions, and present a rigorous study of the effect of the different parameters of the algorithm. We also perform a detailed comparison with the recently improved Basin Hopping algorithm using Delocalized Internal Coordinates. Both algorithms succeeded in either resolving the 3 × 3, 5 × 5, and 7 × 7 DAS surface reconstructions or getting "sufficiently close", i.e., identifying structures that only differ for the positions of a few atoms as well as thermally accessible structures within kBT/unit area of the global minimum, with T = 300 K. Overall, the Genetic Algorithm is more robust with respect to parameter choice and in success rate, while the Basin Hopping method occasionally exhibits some advantages in speed of convergence. In line with previous studies, the results confirm that robustness, success, and speed of convergence of either approach are strongly influenced by how much the trial moves tend to preserve favorable bonding patterns once these appear.

3.
Nucleic Acids Res ; 48(4): 1748-1763, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31930331

ABSTRACT

The double-helical structure of DNA results from canonical base pairing and stacking interactions. However, variations from steady-state conformations resulting from mechanical perturbations in cells have physiological relevance but their dependence on sequence remains unclear. Here, we use molecular dynamics simulations showing sequence differences result in markedly different structural motifs upon physiological twisting and stretching. We simulate overextension on different sequences of DNA ((AA)12, (AT)12, (CC)12 and (CG)12) with supercoiling densities at 200 and 50 mM salt concentrations. We find that DNA denatures in the majority of stretching simulations, surprisingly including those with over-twisted DNA. GC-rich sequences are observed to be more stable than AT-rich ones, with the specific response dependent on the base pair order. Furthermore, we find that (AT)12 forms stable periodic structures with non-canonical hydrogen bonds in some regions and non-canonical stacking in others, whereas (CG)12 forms a stacking motif of four base pairs independent of supercoiling density. Our results demonstrate that 20-30% DNA extension is sufficient for breaking B-DNA around and significantly above cellular supercoiling, and that the DNA sequence is crucial for understanding structural changes under mechanical stress. Our findings have important implications for the activities of protein machinery interacting with DNA in all cells.


Subject(s)
Base Pairing/genetics , Base Sequence/genetics , DNA/chemistry , Biophysical Phenomena , DNA/genetics , GC Rich Sequence/genetics , Hydrogen Bonding , Molecular Dynamics Simulation , Molecular Structure , Nucleic Acid Conformation
4.
J Chem Phys ; 151(4): 044106, 2019 Jul 28.
Article in English | MEDLINE | ID: mdl-31370509

ABSTRACT

Organic molecular crystals contain long-range dispersion interactions that can be challenging for solid-state methods such as density functional theory (DFT) to capture, and in some industrial sectors are overlooked in favor of classical methods to calculate atomistic properties. Hence, this publication addresses the critical question of whether dispersion corrected DFT calculations for organic crystals can reproduce the structural and energetic trends seen from experiment, i.e., whether the calculations can now be said to be truly "on-trend." In this work, we assess the performance of three of the latest dispersion-corrected DFT methods, in calculating the long-range, dispersion energy: the pairwise methods of D3(0) and D3(BJ) and the many-body dispersion method, MBD@rsSCS. We calculate the energetics and optimized structures of two homologous series of organic molecular crystals, namely, carboxylic acids and amino acids. We also use a classical force field method (using COMPASS II) and compare all results to experimental data where possible. The mean absolute error in lattice energies is 9.59 and 343.85 kJ/mol (COMPASS II), 10.17 and 16.23 kJ/mol (MBD@rsSCS), 10.57 and 18.76 kJ/mol [D3(0)], and 8.52 and 14.66 kJ/mol [D3(BJ)] for the carboxylic acids and amino acids, respectively. MBD@rsSCS produces structural and energetic trends that most closely match experimental trends, performing the most consistently across the two series and competing favorably with COMPASS II.

5.
J Chem Theory Comput ; 14(3): 1412-1432, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29447447

ABSTRACT

The solution of the Poisson equation is a crucial step in electronic structure calculations, yielding the electrostatic potential-a key component of the quantum mechanical Hamiltonian. In recent decades, theoretical advances and increases in computer performance have made it possible to simulate the electronic structure of extended systems in complex environments. This requires the solution of more complicated variants of the Poisson equation, featuring nonhomogeneous dielectric permittivities, ionic concentrations with nonlinear dependencies, and diverse boundary conditions. The analytic solutions generally used to solve the Poisson equation in vacuum (or with homogeneous permittivity) are not applicable in these circumstances, and numerical methods must be used. In this work, we present DL_MG, a flexible, scalable, and accurate solver library, developed specifically to tackle the challenges of solving the Poisson equation in modern large-scale electronic structure calculations on parallel computers. Our solver is based on the multigrid approach and uses an iterative high-order defect correction method to improve the accuracy of solutions. Using two chemically relevant model systems, we tested the accuracy and computational performance of DL_MG when solving the generalized Poisson and Poisson-Boltzmann equations, demonstrating excellent agreement with analytic solutions and efficient scaling to ∼109 unknowns and 100s of CPU cores. We also applied DL_MG in actual large-scale electronic structure calculations, using the ONETEP linear-scaling electronic structure package to study a 2615 atom protein-ligand complex with routinely available computational resources. In these calculations, the overall execution time with DL_MG was not significantly greater than the time required for calculations using a conventional FFT-based solver.

6.
Nanoscale ; 9(29): 10312-10320, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28702611

ABSTRACT

As a common type of structural defect, grain boundaries (GBs) play an important role in tailoring the physical and chemical properties of bulk crystals and their two-dimensional (2D) counterparts such as graphene and molybdenum disulfide (MoS2). In this study, we explore the atomic structures and dynamics of three kinds of high-symmetry GBs (α, ß and γ) in monolayer MoS2. Atomic-resolution transmission electron microscopy (TEM) is used to characterize their formation and evolutionary dynamics, and atomistic simulation based analysis explains the size distribution of α-type GBs observed under TEM and the inter-GB interaction, revealing the stabilization mechanism of GBs by pre-existing sulfur vacancies. The results elucidate the correlation between the observed GB dynamics and the migration of sulfur atoms across GBs via a vacancy-mediated mechanism, offering a new perspective for GB engineering in monolayer MoS2, which may be generalized to other transition metal dichalcogenides.

7.
Science ; 351(6280): aad3000, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-27013736

ABSTRACT

The widespread popularity of density functional theory has given rise to an extensive range of dedicated codes for predicting molecular and crystalline properties. However, each code implements the formalism in a different way, raising questions about the reproducibility of such predictions. We report the results of a community-wide effort that compared 15 solid-state codes, using 40 different potentials or basis set types, to assess the quality of the Perdew-Burke-Ernzerhof equations of state for 71 elemental crystals. We conclude that predictions from recent codes and pseudopotentials agree very well, with pairwise differences that are comparable to those between different high-precision experiments. Older methods, however, have less precise agreement. Our benchmark provides a framework for users and developers to document the precision of new applications and methodological improvements.

8.
Philos Trans A Math Phys Eng Sci ; 372(2011): 20130270, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24516184

ABSTRACT

Density functional theory (DFT) has been used in many fields of the physical sciences, but none so successfully as in the solid state. From its origins in condensed matter physics, it has expanded into materials science, high-pressure physics and mineralogy, solid-state chemistry and more, powering entire computational subdisciplines. Modern DFT simulation codes can calculate a vast range of structural, chemical, optical, spectroscopic, elastic, vibrational and thermodynamic phenomena. The ability to predict structure-property relationships has revolutionized experimental fields, such as vibrational and solid-state NMR spectroscopy, where it is the primary method to analyse and interpret experimental spectra. In semiconductor physics, great progress has been made in the electronic structure of bulk and defect states despite the severe challenges presented by the description of excited states. Studies are no longer restricted to known crystallographic structures. DFT is increasingly used as an exploratory tool for materials discovery and computational experiments, culminating in ex nihilo crystal structure prediction, which addresses the long-standing difficult problem of how to predict crystal structure polymorphs from nothing but a specified chemical composition. We present an overview of the capabilities of solid-state DFT simulations in all of these topics, illustrated with recent examples using the CASTEP computer program.

SELECTION OF CITATIONS
SEARCH DETAIL
...