Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(4): 509, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36964262

ABSTRACT

Bed sediments were collected monthly at the outlet of the Ibrahim River between May 2016 and July 2017. Their physical and chemical characteristics were studied to highlight the impact of seasonal variations and discharge on the sediments' geochemical signatures. Granulometric analysis showed that samples collected after rain events contained abundant sand fractions (> 80%), while the clay fraction was more present at the beginning of the dry season, at low monthly average flows (1 m3/s). Ten major elements, 14 rare earth elements (REE), and 30 trace elements (TE) were analyzed. An excess of CaO reflected the contribution of the carbonate rocks of the Ibrahim karstic springs (30.35 ± 3.91%) but CaO concentration decreased during periods of high water. On another hand, no REE enrichment was detected, both in high and low flows. Most sediments collected at low flow had a pronounced REE depletion that occurred particularly for LREE composition (Nd, Pr, Ce, and La). A negative Ce anomaly (0.992) and a positive Eu anomaly (1.313) were revealed with an average La/Yb ratio of 0.570, reflecting a slight enrichment in HREE. Most studied TE were less concentrated than the averages mentioned in PAAS, UCC, and WSA references. However, a Ze enrichment was mainly due to the regional geochemical background, an As enrichment was associated with anthropogenic contribution, and a Zr enrichment was linked to discharges from pharmaceutical industries located at the river outlet. This study still needs to be complemented binding both spatial and temporal criteria for further fluvial sediments' monitoring of the entire catchment area.


Subject(s)
Metals, Rare Earth , Trace Elements , Water Pollutants, Chemical , Rivers/chemistry , Lebanon , Environmental Monitoring , Metals, Rare Earth/analysis , Trace Elements/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis
2.
Water Res ; 158: 118-135, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31022529

ABSTRACT

The export of organic carbon export by the rivers to the oceans either as particulate organic carbon (POC) or dissolved organic carbon (DOC) is very sensitive to climate change especially in permafrost affected catchments where soils are very rich in organic carbon. With global warming, organic carbon export in both forms is expected to increase in Arctic regions. It should affect contemporary biogeochemical cycles in rivers and oceans and therefore modify the whole food web. This study tries to understand complex processes involved in sediment, POC and DOC riverine transport in the Yenisei River basin and to quantify their respective fluxes at the river outlet. The SWAT (Soil and Water Assessment Tool) hydrological model is used in this study to simulate water and suspended sediment transfers in the largest Arctic river. POC and DOC export have been quantified with empirical models, adapted from literature for the study case. First, the hydrological model has been calibrated and validated at a daily time step for the 2003-2008 and the 2009-2016 periods respectively, and its output has been compared with field data for water and sediment fluxes. Based on conceptualization of transfer processes, calibration on climate and soil properties has been performed in order to correctly represent hydrology and sediment transfer in permafrost basins. Second, calibration of empirical models for DOC/POC transport have been performed by comparing their output with field data, available from 2003 to 2016. Our study reveals that SWAT is capable of correctly representing hydrology, sediment transfer, POC and DOC fluxes and their spatial distribution at a daily timescale, and outlines the links between these fluxes and permafrost features. Our simulation effort results in specific sediment, POC and DOC fluxes of 2.97 t km-2 yr-1, 0.13 t km-2 yr-1 and 1.14 t km-2 yr-1 for the period 2003-2016 which are in the range of previous estimates. About 60% of the total fluxes of sediment, DOC and POC to the Arctic Ocean are exported during the two months of the freshet. Spatial analysis show that permafrost-free areas have returned higher daily organic carbon export than permafrost affected zones, highlighting the thawing permafrost effect on carbon cycle in climate change feedback.


Subject(s)
Carbon , Rivers , Arctic Regions , Carbon Cycle , Environmental Monitoring
3.
Sci Total Environ ; 626: 899-914, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29396350

ABSTRACT

Metals in river sediments from a semi-arid Mediterranean basin were investigated from upstream to downstream during contrasting hydrological conditions in 2014 and 2015. The level and origin of the contamination were evaluated using several geochemical and isotopic indicators. Elements were grouped by their level of contamination: high (Pb > Cd > Zn > Cu) and low (Al, Fe, Cr, Co, Ni). Multiple local sources of contamination were identified (industrial, agricultural and domestic waste), as well as very specific ones (gasoline station) and diffuse pollution from atmospheric deposition (gasoline, ores, aerosols). During storm events, the upstream dams can either be secondary sources of contamination or dilutors through particles derived from natural erosion. The contamination was slowed downstream due to the river geomorphology, but eventually washed into the Mediterranean Sea by intense storm events. Naturally derived elements (Co, Ni, Cr, As) were associated with Al, Fe and Mn oxides or clays, and anthropogenic originated metals with phosphorus (Cd and Zn), sulphur (Cu) and POC (Pb enrichment). Cadmium and Pb were the most available metals upstream and at the outlet, but their availability was not strictly related to their degree of contamination. These conclusions could be drawn thanks to an approach by multiple indicators.

4.
Rapid Commun Mass Spectrom ; 27(15): 1681-9, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23821561

ABSTRACT

RATIONALE: The contribution of tropical coastal rivers to the global carbon budget remains unmeasured, despite their high water dynamics, i.e. higher run-off with their basin characteristic of warm temperature. Two rivers draining the western part of the Western Ghats, the Swarna (length 80 km) and Nethravati (147 km) Rivers, were studied for water and carbon cycles. METHODS: The stable isotope ratios of oxygen (δ(18) O values), hydrogen (δ(2) H values) and carbon (δ(13) C values) were used to understand the water circulation, the weathering processes and the carbon biogeochemical cycle. The river water samples were collected during the dry post-monsoonal season (November 2011). RESULTS: The δ(18) O and δ(2) H values of river water suggested that the monsoonal vapour source and its high recycling have a dominant role because of the orographical and tropical conditions. The absence of calcareous rocks has led to dissolved inorganic carbon (DIC) mainly originating from atmospheric/soil CO2 , via rock-weathering processes, and the low soil organic matter combined with high run-off intensity has led to low riverine dissolved organic carbon (DOC) contents. The δ(13) C values increase from upstream to downstream and decrease with increasing pCO2 . There is a positive relationship between the δ(13) CDIC values and the DOC concentrations in these two rivers that is contrary to that in most of the studied rivers of the world. CONCLUSIONS: The higher evapotranspiration supported by tropical conditions suggests that there are higher vapour recycling process in the Swarna and Nethravati basins as studied from the water δ(18) O and δ(2) H values. The basin characteristics of higher rainfall/run-off accompanied by warm temperature suggest that the δ(13) C value of riverine DIC is mainly controlled by the weathering of source rocks (silicates) with variation along the river course by CO2 degassing from the river water to the atmosphere and is less dominated by the oxidation of DOC.


Subject(s)
Carbon Cycle , Carbon/analysis , Environmental Monitoring , Rivers/chemistry , Atmosphere , Carbon Isotopes/analysis , Deuterium/analysis , India , Isotope Labeling , Oxygen Isotopes/analysis , Seasons , Tropical Climate
5.
Sci Total Environ ; 463-464: 91-101, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23792251

ABSTRACT

For centuries, many Mediterranean catchments were covered with vineyards in which copper was widely applied to protect grapevines against fungus. In the Mediterranean-type flow regime, brief and intense flood events increase the stream water discharge by up to 10 times and cause soil leaching and storm runoff. Because vineyards are primarily cultivated on steep slopes, high Cu fluxes are discharged by surface water runoff into the rivers. The purpose of this work was to investigate the riverine behavior and transport of anthropogenic Cu by coupling a sequential chemical extraction (SCE) procedure, used to determine Cu partitioning between residual and non-residual fractions, with δ(65)Cu isotopic measurements in each fraction. In the Baillaury catchment, France, we sampled soils (cultivated and abandoned), river bed sediments (BS), suspended particulate matter (SPM), and river water during the flash flood event of February 2009. Copper partitioning using SCE show that most of Cu in abandoned vineyard soil was in the residual phase (>60%) whereas in cultivated soil, BS and SPM, Cu was mostly (>25%) in non-residual fractions, mainly adsorbed onto iron oxide fractions. A small fraction of Cu was associated with organic matter (5 to 10%). Calculated enrichment factors (EF) are higher than 2 and the anthropogenic contribution was estimated between 50 to 85%. Values for δ(65)Cu in bulk samples were similar to bedrock therefore; δ(65)Cu on SCE fractions of superficial soils and SPM allowed for discrimination between Cu origin and distribution. Copper in residual fractions was of natural mineral origin (δ(65)Cu close to local bedrock, +0.07‰). Copper in water soluble fraction of SPM (δ(65)Cu=+0.26‰) was similar to dissolved river Cu (δ(65)Cu=+0.31‰). Copper from fungicide treatment (δ(65)Cu=-0.35‰) was bound to organic matter (δ(65)Cu=-0.20‰) without or with slight isotopic fractioning. A preferential adsorption of (65)Cu onto iron oxides (δ(65)Cu=+0.5‰) is shown.


Subject(s)
Copper/analysis , Fungicides, Industrial/analysis , Vitis , Agriculture/methods , France , Isotopes/analysis , Soil/chemistry
6.
Rapid Commun Mass Spectrom ; 25(19): 2682-90, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21913244

ABSTRACT

The isotopic signature of Dissolved Inorganic Carbon (DIC), δ(13)C(DIC), has been investigated in the surface waters of a small agricultural catchment on calcareous substratum, Montoussé, located at Auradé (south-west France). The Montoussé catchment is subjected to intense farming (wheat/sunflower rotation) and a moderated application of nitrogenous fertilizers. During the nitrification of the NH(4)(+), supplied by fertilization, nitrate and H(+) ions are produced in the soil. This anthropogenic acidity is combined with the natural acidity due to carbonic acid in weathering processes. From an isotopic point of view, with 'natural weathering', using carbonic acid, δ(13)C(DIC) is intermediate between the δ(13)C of soil CO(2) produced by organic matter oxidation and that of the carbonate rocks, while it has the same value as the carbonates when carbonic acid is substituted by another acid like nitric acid derived from nitrogen fertilizer. The δ(13)C(DIC) values range from -17.1‰ to -10.7‰ in Montoussé stream waters. We also measured the δ(13)C of calcareous molassic deposits (average -7.9‰) and of soil organic carbon (between -24.1‰ and -26‰) to identify the different sources of DIC and to estimate their contribution. The δ(13) C(DIC) value indicates that weathering largely follows the carbonic acid pathway at the springs (sources of the stream). At the outlet of the basin, H(+) ions, produced during the nitrification of N-fertilizer, also contribute to weathering, especially during flood events. This result is illustrated by the relationship between δ(13)C(DIC) and the molar ratio NO(3)(-)/(Ca(2+) + Mg(2+)). Consequently, when the contribution of nitrate increases, the δ(13)C(DIC) increases towards the calcareous end-member. This new isotopic result provides evidence for the direct influence of nitrogen fertilizer inputs on weathering, CO(2) consumption and base cation leaching and confirms previous results obtained using the chemistry of the major ions present in the field, and in soil column experiments.

7.
Sci Total Environ ; 407(8): 2939-52, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19215965

ABSTRACT

The Gascogne region (SW of France) is cultivated for more than 75% of the area. 83 samples of stream bed sediments were collected in three main Gascogne river basins (Gers, Save and Touch, left tributaries of the Garonne river) to evaluate the impact of agricultural practices on trace elements behavior. Eight potential harmful elements (PHE) (Cr, Co, Ni, Cu, Zn, As, Cd and Pb), four reference elements for normalization (Sc, Cs, Al and Fe) and four major elements (Mn, Ca, Mg and P) were considered. The average trace element concentrations in the fine fractions (<63 microm) are in the decreasing order: Zn>Cr>Ni>Pb>Cu>Co>As>Sc>Cs>Cd. Geochemical investigations and an original approach combining regression analysis and chemical sequential extraction allowed to select the most adequate reference material (regional molasse) and reference element (Cs) for normalization procedure. The enrichment factor (EF) is generally lower than 2.5, particularly for Cr, Ni, Cu, As, Zn; however, 23% of the sampling stations are more contaminated (2.5

Subject(s)
Agriculture , Environmental Monitoring , Geologic Sediments/chemistry , Metals, Heavy/analysis , Rivers/chemistry , Water Pollution/analysis , Arsenic/analysis , Arsenic/chemistry , France , Geography , Metals, Heavy/chemistry , Principal Component Analysis , Regression Analysis , Scandium/analysis , Scandium/chemistry , Water Movements
8.
Chemosphere ; 52(3): 635-44, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12738301

ABSTRACT

River bottom sediments and soils were collected from the industrialized Thur River basin (north-eastern France) to assess mercury contamination. The regional geochemical background level of total mercury was evaluated to calculate mercury contamination factors (Fc) in soils and river bottom sediments. Our estimate of the mean background mercury levels in river sediments and soils, not affected by human activities, was 232 ng x g(-1) (range: 27-406 ng x g(-1)). Sediments contaminated by the effluent from a chlor-alkali plant yielded the highest contamination factors (Fc=1784). Contamination factors of surficial soils within 1 km of the industrial site range from 6.3 to 43.6. This contamination is attributed to diffuse atmospheric deposition from this local plant. However, even upstream from this industrial area elevated contamination factors were recorded for river bottom sediments (Fc=3.2 to 26.4) and for one alluvial soil profile (Fc=10). This is possibly due to past pollution resulting from waste water discharges. Mercury contamination in the different horizons of alluvial soils is not correlated with soil organic carbon content, but may be the result of occasional accidental pollution arising from the introduction of contaminated suspended particulate matter by the Thur River during periods of flooding.


Subject(s)
Geologic Sediments/analysis , Industrial Waste/analysis , Mercury/analysis , Soil Pollutants/analysis , Aluminum/analysis , Chemical Industry , Environmental Monitoring , Environmental Pollution/statistics & numerical data , France , Humans , Statistical Distributions , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...