Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 252: 121189, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38295454

ABSTRACT

UV light emitting diodes (LEDs) are considered the new frontier of UV water disinfection. As UV technologies continue to evolve, so does the need to understand disinfection mechanisms to ensure that UV treatment continues to adequately protect public health. In this research, two Escherichia coli (E. coli) strains (the wild type K12 MG1655 and K12 SP11 (ThiI E342K)) were irradiated with UV-C at 268 nm both independently and after exposure to UV-A (365 nm). A synergistic effect was found on the viability of the wild type E. coli K12 strain when UV-A irradiation was applied prior to UV-C. Sublethal UV-A doses, which had a negligible effect on cell viability alone, enhanced UV-C inactivation by several orders of magnitude. This indicated a specific cellular response mechanism to UV-A irradiation, which was traced to direct photolysis of the transfer RNA (tRNA), which are critical links in the translation of messenger RNA to proteins. The wild type K12 strain MG1655, containing tRNAs with a thiolated uridine, directly absorbs the UV-A light, which leads to a reduction in protein synthesis, making them more susceptible to UV-C induced damage. However, the K12 strain SP11 (ThiI E342K), with a point mutation in the thiI gene that prevents a post-transcriptional modification of tRNA, experienced less inactivation upon subsequent irradiation by UV-C. The growth rate of cells, which was inhibited by sublethal UV-A doses, was not inhibited in this mutant strain with the modified tRNA. Time-lapse microscopy with microfluidics showed that sub-lethal UV-A caused a transient, reversible, growth arrest in E. coli. However, once the growth resumed, the cell division time resembled that of unirradiated cells. Damage induced by UV-A impaired the recovery of damage induced by UV-C. Depending on the UV-A dose applied, the synergistic effect remained even when there was a time delay of several hours between UV-A and UV-C exposures. The effect of sublethal UV-A was reversible over time; therefore, the synergistic effect was strongest when UV-C was applied immediately after UV-A. Combining UV-A and UV-C irradiation may serve as a practical tool to increase UV disinfection efficacy, which could potentially reduce costs while still adequately protecting public health.


Subject(s)
Escherichia coli , Water Purification , Escherichia coli/genetics , Escherichia coli/radiation effects , Ultraviolet Rays , Disinfection , RNA, Transfer
2.
Environ Microbiol ; 19(2): 434-442, 2017 02.
Article in English | MEDLINE | ID: mdl-27059439

ABSTRACT

Since different wavelengths of light impact different cellular targets, microorganisms exposed to natural sunlight experience a combination of multiple stressors. In order to better understand the effects of sunlight on microorganisms we, therefore, need to understand how different wavelength act alone and in combination. Here, we describe a synergistic effect between UVA and UVB irradiation on viability of Escherichia coli bacteria. To investigate the basis of this synergistic effect we analysed mutant strains that were obtained through selection for increased resistance to combined UVA and UVB. By identifying and reconstructing genetic changes in the resistant strains we provide evidence that UVA-absorbing thiouridine residues in tRNAs are the key to the synergistic effect. Our study provides insights into how naturally occurring combinations of stressors can interact, and points to new ways for controlling microbial populations.


Subject(s)
Escherichia coli/radiation effects , RNA, Transfer/radiation effects , Thiouridine/chemistry , Ultraviolet Rays , Escherichia coli/genetics , Microbial Viability/radiation effects , RNA, Transfer/chemistry , Radiation Tolerance , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL
...