Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10970, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414751

ABSTRACT

Wildfire events are becoming more frequent and severe on a global scale. Rising temperatures, prolonged drought, and the presence of pyrophytic invasive grasses are contributing to the degradation of native vegetation communities. Within the Great Basin region of the western U.S., increasing wildfire frequency is transforming the ecosystem toward a higher degree of homogeneity, one dominated by invasive annual grasses and declining landscape productivity. Greater sage-grouse (Centrocercus urophasianus; hereafter sage-grouse) are a species of conservation concern that rely on large tracts of structurally and functionally diverse sagebrush (Artemisia spp.) communities. Using a 12-year (2008-2019) telemetry dataset, we documented immediate impacts of wildfire on demographic rates of a population of sage-grouse that were exposed to two large wildfire events (Virginia Mountains Fire Complex-2016; Long Valley Fire-2017) near the border of California and Nevada. Spatiotemporal heterogeneity in demographic rates were accounted for using a Before-After Control-Impact Paired Series (BACIPS) study design. Results revealed a 40% reduction in adult survival and a 79% reduction in nest survival within areas impacted by wildfires. Our results indicate that wildfire has strong and immediate impacts to two key life stages of a sagebrush indicator species and underscores the importance of fire suppression and immediate restoration following wildfire events.


Subject(s)
Artemisia , Galliformes , Wildfires , Animals , Ecosystem , Conservation of Natural Resources/methods , Quail
2.
MethodsX ; 10: 102023, 2023.
Article in English | MEDLINE | ID: mdl-36817696

ABSTRACT

Increased demand for domestic production of renewable energy has led to expansion of energy infrastructure across western North America. Much of the western U.S. comprises remote landscapes that are home to a variety of vegetation communities and wildlife species, including the imperiled sagebrush ecosystem and indicator species such as greater sage-grouse (Centrocercus urophasianus). Geothermal sources in particular have potential for continued development across the western U.S. but impacts to greater sage-grouse and other species are unknown. To address this information gap, we describe a novel two-pronged methodology that analyzes impacts of geothermal energy production on pattern and process of greater sage-grouse populations using (a) before-after control-impact (BACI) measures of population growth and lek absence rates and (b) concurrent-to-operation evaluations of demographic rates. Growth and absence rate analyses utilized 14 years of lek survey data collected prior (2005-2011) and concurrent (2012-2018) to geothermal operations at two sites in Nevada, USA. Demographic analyses utilized relocation data, restricted inference to concurrent years, and incorporated 17 additional control sites. Demographic results were applied to >100 potential geothermal sites distributed across the study region to generate spatially explicit predictions of unrealized population-level impacts.•State-space and generalized linear models yield estimates of population growth and lek absence rates, respectively, before and after the onset of geothermal energy production; distances ranging from 2-30 km are evaluated as alternative control-impact footprint hypotheses; this provides inference about the spatial extent as well as the magnitude of impacts associated with geothermal development.•Estimation of important population demographic rates are implemented to investigate the processes by which geothermal energy development might reduce population growth; independent estimates of confounding, environmental effects from 17 control sites are made spatially explicit within 'impact' models to establish baseline conditions otherwise masked by collinearity.•Population matrix models are built using estimates from demographic analyses to provide landscape mapping of impacts associated with potential geothermal sites.

3.
Ecol Appl ; 33(3): e2787, 2023 04.
Article in English | MEDLINE | ID: mdl-36482030

ABSTRACT

Genetic variation is a well-known indicator of population fitness yet is not typically included in monitoring programs for sensitive species. Additionally, most programs monitor populations at one scale, which can lead to potential mismatches with ecological processes critical to species' conservation. Recently developed methods generating hierarchically nested population units (i.e., clusters of varying scales) for greater sage-grouse (Centrocercus urophasianus) have identified population trend declines across spatiotemporal scales to help managers target areas for conservation. The same clusters used as a proxy for spatial scale can alert managers to local units (i.e., neighborhood-scale) with low genetic diversity, further facilitating identification of management targets. We developed a genetic warning system utilizing previously developed hierarchical population units to identify management-relevant areas with low genetic diversity within the greater sage-grouse range. Within this warning system we characterized conservation concern thresholds based on values of genetic diversity and developed a statistical model for microsatellite data to robustly estimate these values for hierarchically nested populations. We found that 41 of 224 neighborhood-scale clusters had low genetic diversity, 23 of which were coupled with documented local population trend decline. We also found evidence of cross-scale low genetic diversity in the small and isolated Washington population, unlikely to be reversed through typical local management actions alone. The combination of low genetic diversity and a declining population suggests relatively high conservation concern. Our findings could further facilitate conservation action prioritization in combination with population trend assessments and (or) local information, and act as a base-line of genetic diversity for future comparison. Importantly, the approach we used is broadly applicable across taxa.


Subject(s)
Animals, Wild , Galliformes , Animals , Conservation of Natural Resources/methods , Ecosystem , Models, Statistical
4.
Ecol Evol ; 12(12): e9565, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36466138

ABSTRACT

Wildlife populations are increasingly affected by natural and anthropogenic changes that negatively alter biotic and abiotic processes at multiple spatiotemporal scales and therefore require increased wildlife management and conservation efforts. However, wildlife management boundaries frequently lack biological context and mechanisms to assess demographic data across the multiple spatiotemporal scales influencing populations. To address these limitations, we developed a novel approach to define biologically relevant subpopulations of hierarchically nested population levels that could facilitate managing and conserving wildlife populations and habitats. Our approach relied on the Spatial "K"luster Analysis by Tree Edge Removal clustering algorithm, which we applied in an agglomerative manner (bottom-to-top). We modified the clustering algorithm using a workflow and population structure tiers from least-cost paths, which captured biological inferences of habitat conditions (functional connectivity), dispersal capabilities (potential connectivity), genetic information, and functional processes affecting movements. The approach uniquely included context of habitat resources (biotic and abiotic) summarized at multiple spatial scales surrounding locations with breeding site fidelity and constraint-based rules (number of sites grouped and population structure tiers). We applied our approach to greater sage-grouse (Centrocercus urophasianus), a species of conservation concern, across their range within the western United States. This case study produced 13 hierarchically nested population levels (akin to cluster levels, each representing a collection of subpopulations of an increasing number of breeding sites). These closely approximated population closure at finer ecological scales (smaller subpopulation extents with fewer breeding sites; cluster levels ≥2), where >92% of individual sage-grouse's time occurred within their home cluster. With available population monitoring data, our approaches can support the investigation of factors affecting population dynamics at multiple scales and assist managers with making informed, targeted, and cost-effective decisions within an adaptive management framework. Importantly, our approach provides the flexibility of including species-relevant context, thereby supporting other wildlife characterized by site fidelity.

5.
Proc Natl Acad Sci U S A ; 113(45): 12745-12750, 2016 Nov 08.
Article in English | MEDLINE | ID: mdl-27791084

ABSTRACT

Iconic sagebrush ecosystems of the American West are threatened by larger and more frequent wildfires that can kill sagebrush and facilitate invasion by annual grasses, creating a cycle that alters sagebrush ecosystem recovery post disturbance. Thwarting this accelerated grass-fire cycle is at the forefront of current national conservation efforts, yet its impacts on wildlife populations inhabiting these ecosystems have not been quantified rigorously. Within a Bayesian framework, we modeled 30 y of wildfire and climatic effects on population rates of change of a sagebrush-obligate species, the greater sage-grouse, across the Great Basin of western North America. Importantly, our modeling also accounted for variation in sagebrush recovery time post fire as determined by underlying soil properties that influence ecosystem resilience to disturbance and resistance to invasion. Our results demonstrate that the cumulative loss of sagebrush to direct and indirect effects of wildfire has contributed strongly to declining sage-grouse populations over the past 30 y at large spatial scales. Moreover, long-lasting effects from wildfire nullified pulses of sage-grouse population growth that typically follow years of higher precipitation. If wildfire trends continue unabated, model projections indicate sage-grouse populations will be reduced to 43% of their current numbers over the next three decades. Our results provide a timely example of how altered fire regimes are disrupting recovery of sagebrush ecosystems and leading to substantial declines of a widespread indicator species. Accordingly, we present scenario-based stochastic projections to inform conservation actions that may help offset the adverse effects of wildfire on sage-grouse and other wildlife populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...