Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 350: 123989, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38642791

ABSTRACT

The increasing global food demand is threatening the sustainability of agrifood production systems. The intensification of agricultural practices, with inadequate use of pesticides and fertilizers, poses major challenges to the good functioning of agroecosystems and drastically degrades the soil quality. Nanotechnology is expected to optimize the current farming practices and mitigate some associated impacts. Layered double hydroxides (LDHs) are a class of nanomaterials with high potential for use in agricultural productions, mostly due to their sustained release of nutrients. Considering its novelty and lack of studies on the terrestrial ecosystem, it is essential to assess potential long-term harmful consequences to non-target organisms. Our study aimed to evaluate the effect of Zn-Al-NO3 LDH and Mg-Al-NO3 LDH ageing on the survival and reproduction of two soil invertebrate species Enchytraeus crypticus and Folsomia candida. We postulated that the toxicity of nanomaterials to soil invertebrates would change with time, such that the ageing of soil amendments would mediate their impacts on both species. Our results showed that the toxicity of LDHs was species-dependent, with Zn-Al-NO3 LDH being more toxic to E. crypticus, while Mg-Al-NO3 LDH affected more F. candida, especially in the last ageing period, where reproduction was the most sensitive biological parameter. The toxicity of both nanomaterials increased with ageing time, as shown by the decrease of the EC50 values over time. The influence of LDH dissolution and availability of Zn and Mg in the soil pore water was the main factor related to the toxicity, although we cannot rule out the influence of other structural constituents of LDHs (e.g., nitrates and aluminium). This study supports the importance of incorporating ageing in the ecotoxicity testing of nanomaterials, considering their slow release, as effects on soil organisms can change and lead to more severe impacts on the ecosystem functioning.


Subject(s)
Fertilizers , Oligochaeta , Soil Pollutants , Soil , Animals , Fertilizers/toxicity , Soil Pollutants/toxicity , Soil/chemistry , Oligochaeta/drug effects , Nanostructures/toxicity , Reproduction/drug effects , Hydroxides/toxicity , Hydroxides/chemistry , Ecosystem , Invertebrates/drug effects
2.
Sci Total Environ ; 901: 165955, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-37536601

ABSTRACT

Research on nanotechnology with applications in agriculture has been gathering attention because it may achieve a good balance between agricultural production and environmental integrity. Among the vast nanomaterials, layered double hydroxides (LDHs) are a promising solution for supplying crops with macro- and/or micronutrients. Still, little is known about their safety implications for non-target organisms, such as soil invertebrates. The habitat function of soils might be impacted by potential stressors, which can be assessed through avoidance behaviour tests. This study aimed to assess the effect of two innovative agriproducts, Zn-Al-NO3 LDH and Mg-Al-NO3 LDH, on the avoidance behaviour of the enchytraeid Enchytraeus crypticus and the collembolan Folsomia candida, over time. Simultaneously, Zn and Mg potential release from LDHs to soil was evaluated. Overall, the behaviour of soil invertebrates differed between species, with enchytraeids being more sensitive to LDHs-treated soils than collembolans, possibly explained by their different physiological traits. The behaviour of soil organisms also depended on the LDH structural composition and was time-variable. Soil treated with Zn-Al-NO3 LDH was perceived as less favourable compared to Mg-Al-NO3 LDH, which was preferred to clean soil at most tested concentrations. LDHs toxicity was partly, but not exclusively, related to Zn and Mg release. Cations release over time was demonstrated in the chemical assessment. Still, LDHs toxicity to soil invertebrates decreased as increasing AC50 values were derived over time. Slower dissolution over time might explain the decrease in toxicity. Our study demonstrates that both soil invertebrates could sense LDHs in soil and eventually adapt their behaviour by avoiding or preferring, according to the type and level of LDH present.

3.
Ecotoxicol Environ Saf ; 174: 120-128, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30825734

ABSTRACT

Despite the increasing interest for biochar as a soil amendment, a knowledge gap remains on its impacts on non-target soil and aquatic species. We hypothesised that biochar particle size and application rate can play a role in the toxicity to biota. Pine woodchip biochar was incorporated in a clean soil at three particle size classes: small (<0.5 mm), medium (1-2 mm), and large (<4 mm), and at two concentrations: 1% and 6% w/w. A laboratory screening with earthworm Eisenia andrei avoidance behaviour bioassay was carried out to test the most adequate application rates, particle sizes and soil-biochar pre-incubation period. Thereafter, a 28-day greenhouse microcosm experiment was conducted as an ecologically more representative approach. Survival, vertical distribution and weight changes of E. andrei, and bait-lamina consumption were recorded. Soil leachates from the microcosms were collected to evaluate their impact on Daphnia magna immobilisation and Vibrio fischeri (Microtox®) bioluminescence. A feeding experiment with E. andrei was also performed to address earthworm weight changes and to conduct a screening of PAH-type metabolites in their tissue. The 6% <0.5 mm treatment pre-incubated for 96 h induced significant avoidance of the earthworms. Significantly lower bait-lamina consumption was observed in microcosms for the 6% <0.5 mm treatment. Moreover, particle size was a statistically significant factor regarding the loss of weight in the feeding experiment and higher concentration of naphthalene-type metabolites detected in E. andrei tissue, when exposed to <0.5 mm biochar particles. The leachates had no adverse effects on the aquatic species. The results suggest that particles <0.5 mm of pine woodchip biochar can pose sub-lethal effects on soil biota.


Subject(s)
Charcoal/toxicity , Oligochaeta/drug effects , Soil Pollutants/toxicity , Animals , Biota , Charcoal/chemistry , Daphnia/drug effects , Particle Size , Soil , Soil Pollutants/analysis
4.
Mater Sci Eng C Mater Biol Appl ; 71: 322-334, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27987714

ABSTRACT

The novel Ti-20Zr-5Ta-2Ag alloy was characterised concerning its microstructure, morphology, mechanical properties, its passive film composition and thickness, its long-term electrochemical stability, corrosion resistance, ion release rate in Ringer solution of acid, neutral and alkaline pH values and antibacterial activity. The new alloy has a crystalline α microstructure (by XRD). Long-term XPS and SEM analyses show the thickening of the passive film and the deposition of hydroxyapatite in neutral and alkaline Ringer solution. The values of the electrochemical parameters confirm the over time stability of the new alloy passive film. All corrosion parameters have very favourable values in time which attest a high resistance to corrosion. Impedance spectra evinced a bi-layered passive film formed by the barrier, insulating layer and the porous layer. The monitoring of the open circuit potentials indicated the stability of the protective layers and their thickening in time. The new alloy releases (by ICP-MS measurements) very low quantities of Ti, Zr, Ag ions and no Ta ions. The new alloy exhibits a low antibacterial activity.


Subject(s)
Alloys/chemistry , Anti-Bacterial Agents/chemistry , Implants, Experimental , Silver/chemistry , Titanium/chemistry , Zirconium/chemistry , Time Factors
5.
Ecotoxicology ; 23(9): 1784-93, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25213286

ABSTRACT

It is vital to address potential risks to aquatic ecosystems exposed to runoff and leachates from biochar-amended soils, before large scale applications can be considered. So far, there are no established approaches for such an assessment. This study used a battery of bioassays and representative aquatic organisms for assessing the acute toxicity of water-extractable fractions of biochar-amended soil, at reported application rates (80 t ha(-1)). Biochar-amended aqueous soil extracts contained cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), manganese (Mn), zinc (Zn), nickel (Ni), lead (Pb), arsenic (As) and mercury (Hg) (Σmetals 96.3 µg l(-1)) as well as the 16 priority PAHs defined by the U.S. Environmental Protection Agency (Σ16PAHs 106 ng l(-1)) at contents in the range of current EU regulations for surface waters. Nevertheless, acute exposure to soil-biochar (SB) extracts resulted in species-specific effects and dose-response patterns. While the bioluminescent marine bacterium Vibrio fischeri was the most sensitive organism to aqueous SB extracts, there were no effects on the growth of the microalgae Pseudokirchneriella subcapitata. In contrast, up to 20 and 25% mobility impairment was obtained for the invertebrate Daphnia magna upon exposure to 50 and 100% SB extract concentrations (respectively). Results suggest that a battery of rapid and cost-effective aquatic bioassays that account for ecological representation can complement analytical characterization of biochar-amended soils and risk assessment approaches for surface and groundwater protection.


Subject(s)
Aquatic Organisms/drug effects , Charcoal , Ecosystem , Soil Pollutants/toxicity , Toxicity Tests , Aliivibrio fischeri/drug effects , Animals , Daphnia/drug effects , Environmental Monitoring , Metals, Heavy/toxicity , Microalgae/drug effects
6.
Ecotoxicology ; 23(9): 1814-22, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25154459

ABSTRACT

The natural LUFA 2.2 standard soil has been extensively used in hazard assessment of soil contaminants, combining representation with ecological relevance for accurate risk evaluation. This study revisited the water-extractable fraction of LUFA 2.2 soil, through consecutive soil wet-dry cycles and discusses implications of use as standard substrate in derivation of ecotoxicological data and toxicity thresholds. Potentially bioavailable contents of metals (177.9-888.7 µg/l) and the 16 polycyclic aromatic hydrocarbons (PAHs; 0.064-0.073 µg/l) were dependent on the number of soil wetting-drying cycles applied. Such contents were screened based on current EU guidelines for surface waters and reported toxicological benchmarks for aquatic organisms. Aqueous concentrations generally fit within recommended Environmental Quality Standards (EQS), except for Hg (0.13-0.22 µg/l; >Maximum Allowable Concentration-MAC-of 0.07 µg/l) and for the sum of benzo(g,h,i)perylene and indeno(1,2,3-cd)pyrene (0.005 µg/l; >double the Annual Average of 0.002 µg/l). Further, aqueous As, Zn, Cd, Ni and Cr concentrations exceeded 'lower benchmark' values for aquatic organisms, possibly reflecting an inadequate derivation for ecotoxicological data. In turn, PAHs in LUFA 2.2 soil aqueous extracts, whilst individually, are not likely to constitute a hazard to test biota exposed to its aqueous fractions. This study urges for potentially bioavailable fractions of reference and standard natural soils to be adequately characterized and addressed as part of the research aim, experimental approach and design, as well as the expected scope of the outcomes.


Subject(s)
Soil Pollutants/analysis , Soil/standards , Ecotoxicology/methods , Environmental Monitoring , Metals/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...