Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
J Enzyme Inhib Med Chem ; 39(1): 2289007, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38086763

ABSTRACT

We developed new iminosugar-based glycosidase inhibitors against SARS-CoV-2. Known drugs (miglustat, migalastat, miglitol, and swainsonine) were chosen as lead compounds to develop three classes of glycosidase inhibitors (α-glucosidase, α-galactosidase, and mannosidase). Molecular modelling of the lead compounds, synthesis of the compounds with the highest docking scores, enzyme inhibition tests, and in vitro antiviral assays afforded rationally designed inhibitors. Two highly active α-glucosidase inhibitors were discovered, where one of them is the most potent iminosugar-based anti-SARS-CoV-2 agent to date (EC90 = 1.94 µM in A549-ACE2 cells against Omicron BA.1 strain). However, galactosidase inhibitors did not exhibit antiviral activity, whereas mannosidase inhibitors were both active and cytotoxic. As our iminosugar-based drug candidates act by a host-directed mechanism, they should be more resilient to drug resistance. Moreover, this strategy could be extended to identify potential drug candidates for other viral infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Models, Molecular , Mannosidases , Antiviral Agents/pharmacology , Molecular Docking Simulation
2.
Gels ; 9(11)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37998939

ABSTRACT

Monodispersed polyethylene glycol diacrylate (PEGDA)/acrylic acid (AA) microgels with a tuneable negative charge and macroporous internal structure have been produced using a Lego-inspired droplet microfluidic device. The surface charge of microgels was controlled by changing the content of AA in the monomer mixture from zero (for noncharged PEGDA beads) to 4 wt%. The macroporosity of the polymer matrix was introduced by adding 20 wt% of 600-MW polyethylene glycol (PEG) as a porogen material into the monomer mixture. The porogen was successfully leached out with acetone after UV-crosslinking, which resulted in micron-sized cylindrical pores with crater-like morphology, uniformly arranged on the microgel surface. Negatively charged PEGDA/AA beads showed improved adsorption capacity towards positively charged organic dyes (methylene blue and rhodamine B) compared to neutral PEGDA beads and high repulsion of negatively charged dye molecules (methyl orange and congo red). Macroporous microgels showed better adsorption properties than nonporous beads, with a maximum adsorption capacity towards methylene blue of 45 mg/g for macroporous PEGDA/AA microgels at pH 8.6, as compared to 23 mg/g for nonporous PEGDA/AA microgels at the same pH. More than 98% of Cu(II) ions were removed from 50 ppm solution at pH 6.7 using 2.7 mg/mL of macroporous PEGDA/AA microgel. The adsorption of cationic species was significantly improved when pH was increased from 3 to 9 due to a higher degree of ionization of AA monomeric units in the polymer network. The synthesized copolymer beads can be used in drug delivery to achieve improved loading capacity of positively charged therapeutic agents and in tissue engineering, where a negative charge of scaffolds coupled with porous structure can help to achieve improved permeability of high-molecular-weight metabolites and nutrients, and anti-fouling activity against negatively charged species.

3.
Chembiochem ; 24(20): e202300414, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37531452

ABSTRACT

The aim of this research was to prove the function of the putative opine dehydrogenase from Desulfohalobium retbaense and to characterize the enzyme in terms of functional and kinetic parameters. A putative opine dehydrogenase was identified from a metagenomic library by a sequence-based technique search of the metagenomic library, and afterward was successfully heterologously produced in Escherichia coli. In order to examine its potential for applications in the synthesis of secondary amines, first the substrate specificity of the enzyme towards different amino donors and amino acceptors was determined. The highest affinity was observed towards small amino acids, preferentially L-alanine, and when it comes to α-keto acids, pyruvate proved to be a preferential amino acceptor. The highest activity was observed at pH 6.5 in the absence of salts. The enzyme showed remarkable stability in a wide range of experimental conditions, such as broad pH stability (from 6.0-11.0 after 30 min incubation in buffers at a certain pH), stability in the presence of NaCl up to 3.0 M for 24 h, it retained 80 % of the initial activity after 1 h incubation at 45 °C, and 65 % of the initial activity after 24 h incubation in 30 % dimethyl sulfoxide.


Subject(s)
Salts , Sodium Chloride , Gene Library , Oxidoreductases , Substrate Specificity , Enzyme Stability , Hydrogen-Ion Concentration
4.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768280

ABSTRACT

Finding an effective drug to prevent or treat COVID-19 is of utmost importance in tcurrent pandemic. Since developing a new treatment takes a significant amount of time, drug repurposing can be an effective option for achieving a rapid response. This study used a combined in silico virtual screening protocol for candidate SARS-CoV-2 PLpro inhibitors. The Drugbank database was searched first, using the Informational Spectrum Method for Small Molecules, followed by molecular docking. Gramicidin D was selected as a peptide drug, showing the best in silico interaction profile with PLpro. After the expression and purification of PLpro, gramicidin D was screened for protease inhibition in vitro and was found to be active against PLpro. The current study's findings are significant because it is critical to identify COVID-19 therapies that are efficient, affordable, and have a favorable safety profile.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Gramicidin , Molecular Docking Simulation , Databases, Factual , Protease Inhibitors/pharmacology , Antiviral Agents/pharmacology
5.
Front Biosci (Landmark Ed) ; 28(1): 8, 2023 01 13.
Article in English | MEDLINE | ID: mdl-36722278

ABSTRACT

BACKGROUND: Drug resistance is a critical problem in health care that affects therapy outcomes and requires new approaches to drug design. SARS-CoV-2 Mpro mutations are of concern as they can potentially reduce therapeutic efficacy. Viral infections are amongst the many disorders for which nutraceuticals have been employed as an adjunct therapy. The aim of this study was to examine the potential in vitro activity of L-arginine and vitamin C against SARS-CoV-2 Mpro. METHODS: The Mpro inhibition assay was developed by cloning, expression, purification, and characterization of Mpro. Selected compounds were then screened for protease inhibition. RESULTS: L-arginine was found to be active against SARS-CoV-2 Mpro, while a vitamin C/L-arginine combination had a synergistic antiviral action against Mpro. These findings confirm the results of our previous in silico repurposing study that showed L-arginine and vitamin C were potential Mpro inhibitors. Moreover, they suggest a possible molecular mechanism to explain the beneficial effect of arginine in COVID patients. CONCLUSIONS: The findings of the current study are important because they help to identify COVID-19 treatments that are efficient, inexpensive, and have a favorable safety profile. The results of this study also suggest a possible adjuvant nutritional strategy for COVID-19 that could be used in conjunction with pharmacological agents.


Subject(s)
Arginine , Ascorbic Acid , Coronavirus 3C Proteases , SARS-CoV-2 , Humans , Arginine/pharmacology , Ascorbic Acid/pharmacology , COVID-19 , Dietary Supplements , SARS-CoV-2/drug effects , Coronavirus 3C Proteases/antagonists & inhibitors
6.
Polymers (Basel) ; 14(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36432960

ABSTRACT

Many articles in the literature deal with horseradish peroxidase (HRP) biomineralization, but none pay attention to the isoenzyme composition of commercial HRP or the influence of the carbohydrate component of the protein molecule on the biomineralization process. To study the impact of these factors, we performed periodate oxidation of commercial HRP and a purified HRP-C isoform for biomineralization within ZIF-8. With purified HRP, enzyme@ZIF-8 biocomposites with higher activity were obtained, while periodate oxidation of the carbohydrate component of both commercial HRP and purified HRP-C yields biocomposites with very high activity in acetate buffer that does not degrade the ZIF-8 structure. Using acetate instead of phosphate buffer can prevent the false high activity of HRP@ZIF-8 biocomposites caused by the degradation of ZIF-8 coating. At the same time, purification and especially oxidation of the carbohydrate component of enzymes prior to biomineralization lead to significantly improved activity of the biocomposites.

7.
N Biotechnol ; 69: 36-48, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35301156

ABSTRACT

Correct elucidation of physiological and pathological processes mediated by extracellular vesicles (EV) is highly dependent on the reliability of the method used for their purification. Currently available chemical/physical protocols for sample fractionation are time-consuming, often scarcely reproducible and their yields are low. Immuno-capture based approaches could represent an effective purification alternative to obtain homogeneous EV samples. An easy-to-operate chromatography system was set-up for the purification of intact EVs based on a single domain (VHH) antibodies-copolymer matrix suitable for biological samples as different as conditioned cell culture medium and human plasma. Methacrylate-based copolymer is a porous solid support, the chemical versatility of which enables its efficient functionalization with VHHs. The combined analyses of morphological features and biomarker (CD9, CD63 and CD81) presence indicated that the recovered EVs were exosomes. The lipoprotein markers APO-A1 and APO-B were both negative in tested samples. This is the first report demonstrating the successful application of spherical porous methacrylate-based copolymer coupled with VHHs for the exosome isolation from biological fluids. This inexpensive immunoaffinity method has the potential to be applied for the isolation of EVs belonging to different morphological and physiological classes.


Subject(s)
Exosomes , Extracellular Vesicles , Single-Domain Antibodies , Extracellular Vesicles/chemistry , Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Humans , Methacrylates/analysis , Methacrylates/metabolism , Polymers/metabolism , Reproducibility of Results
8.
ChemistryOpen ; 11(2): e202100248, 2022 02.
Article in English | MEDLINE | ID: mdl-35103413

ABSTRACT

In the current pandemic, finding an effective drug to prevent or treat the infection is the highest priority. A rapid and safe approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 PLpro promotes viral replication and modulates the host immune system, resulting in inhibition of the host antiviral innate immune response, and therefore is an attractive drug target. In this study, we used a combined in silico virtual screening for candidates for SARS-CoV-2 PLpro protease inhibitors. We used the Informational spectrum method applied for Small Molecules for searching the Drugbank database followed by molecular docking. After in silico screening of drug space, we identified 44 drugs as potential SARS-CoV-2 PLpro inhibitors that we propose for further experimental testing.


Subject(s)
Coronavirus Papain-Like Proteases/chemistry , SARS-CoV-2/chemistry , COVID-19 , Humans , Molecular Docking Simulation
9.
Polymers (Basel) ; 13(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34833174

ABSTRACT

Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to encapsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein's surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from -10.2 to -36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.

10.
Int J Mol Sci ; 22(6)2021 Mar 16.
Article in English | MEDLINE | ID: mdl-33809788

ABSTRACT

Chitinases catalyze the degradation of chitin, a polymer of N-acetylglucosamine found in crustacean shells, insect cuticles, and fungal cell walls. There is great interest in the development of improved chitinases to address the environmental burden of chitin waste from the food processing industry as well as the potential medical, agricultural, and industrial uses of partially deacetylated chitin (chitosan) and its products (chito-oligosaccharides). The depolymerization of chitin can be achieved using chemical and physical treatments, but an enzymatic process would be more environmentally friendly and more sustainable. However, chitinases are slow-acting enzymes, limiting their biotechnological exploitation, although this can be overcome by molecular evolution approaches to enhance the features required for specific applications. The two main goals of this study were the development of a high-throughput screening system for chitinase activity (which could be extrapolated to other hydrolytic enzymes), and the deployment of this new method to select improved chitinase variants. We therefore cloned and expressed the Bacillus licheniformis DSM8785 chitinase A (chiA) gene in Escherichia coli BL21 (DE3) cells and generated a mutant library by error-prone PCR. We then developed a screening method based on fluorescence-activated cell sorting (FACS) using the model substrate 4-methylumbelliferyl ß-d-N,N',N″-triacetyl chitotrioside to identify improved enzymes. We prevented cross-talk between emulsion compartments caused by the hydrophobicity of 4-methylumbelliferone, the fluorescent product of the enzymatic reaction, by incorporating cyclodextrins into the aqueous phases. We also addressed the toxicity of long-term chiA expression in E. coli by limiting the reaction time. We identified 12 mutants containing 2-8 mutations per gene resulting in up to twofold higher activity than wild-type ChiA.


Subject(s)
Chitinases/genetics , Directed Molecular Evolution , Flow Cytometry , High-Throughput Screening Assays , Catalytic Domain , Cell Survival , Cyclodextrins , Fluorescent Dyes/metabolism , Gene Library , Models, Molecular , Mutation/genetics , Structural Homology, Protein , Substrate Specificity , Trisaccharides , Umbelliferones
11.
Int J Biol Macromol ; 181: 1072-1080, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-33892032

ABSTRACT

High amounts of toxic textile dyes are released into the environment due to coloring and wastewaters treatment processes' inefficiency. To remove dyes from the environment and wastewaters, researchers focused on applying immobilized enzymes due to mild reaction conditions and enzyme nontoxicity. Laccases are oxidases with wide substrate specificity, capable of degradation of many different dye types. Laccase from Streptomyces cyaneus was expressed on the surface of Saccharomyces cerevisiae EBY100 cells. The specific activity of surface-displayed laccase was increased by toluene-induced lysis to 3.1 U/g of cell walls. For cell wall laccase immobilization within hydrogel beads, alginate was modified by dopamine using periodate oxidation and reductive amination and characterized by UV-Vis, FTIR, and NMR spectroscopy. Cell wall laccase was immobilized within alginate and dopamine-alginate beads additionally cross-linked by oxygen and laccase. The immobilized enzyme's specific activity was two times higher using dopamine-alginate compared to native alginate beads, and immobilization yield increased 16 times. Cell wall laccase immobilized within dopamine-alginate beads decolorized Amido Black 10B, Reactive Black 5, Evans Blue, and Remazol Brilliant Blue with 100% efficiency and after ten rounds of multiple-use retained decolorization efficiency of 90% with Evans Blue and 61% with Amido Black.


Subject(s)
Alginates/chemistry , Coloring Agents/isolation & purification , Dopamine/chemistry , Laccase/chemistry , Cell Wall/chemistry , Streptomyces/enzymology
12.
Molecules ; 26(4)2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33673072

ABSTRACT

Oligomeric intermediates on the pathway of amyloid fibrillation are suspected as the main cytotoxins responsible for amyloid-related pathogenicity. As they appear to be a part of the lag phase of amyloid fibrillation when analyzed using standard methods such as Thioflavin T (ThT) fluorescence, a more sensitive method is needed for their detection. Here we apply Fourier transform infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode for fast and cheap analysis of destabilized hen-egg-white lysozyme solution and detection of oligomer intermediates of amyloid fibrillation. Standard methods of protein aggregation analysis- Thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), and 8-anilinonaphthalene-1-sulphonic acid (ANS) fluorescence were applied and compared to FTIR spectroscopy data. Results show the great potential of FTIR for both, qualitative and quantitative monitoring of oligomer formation based on the secondary structure changes. While oligomer intermediates do not induce significant changes in ThT fluorescence, their secondary structure changes were very prominent. Normalization of specific Amide I region peak intensities by using Amide II peak intensity as an internal standard provides an opportunity to use FTIR spectroscopy for both qualitative and quantitative analysis of biological samples and detection of potentially toxic oligomers, as well as for screening of efficiency of fibrillation procedures.


Subject(s)
Amyloid/chemistry , Amyloidogenic Proteins/chemistry , Benzothiazoles/chemistry , Muramidase/chemistry , Amyloid/ultrastructure , Amyloidogenic Proteins/ultrastructure , Animals , Chickens , Fluorescence , Microscopy, Atomic Force , Muramidase/ultrastructure , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared
13.
Molecules ; 25(10)2020 May 22.
Article in English | MEDLINE | ID: mdl-32455903

ABSTRACT

Glucose oxidase (GOx) is an important industrial enzyme that can be optimized for specific applications by mutagenesis and activity-based screening. To increase the efficiency of this approach, we have developed a new ultrahigh-throughput screening platform based on a microfluidic lab-on-chip device that allows the sorting of GOx mutants from a saturation mutagenesis library expressed on the surface of yeast cells. GOx activity was measured by monitoring the fluorescence of water microdroplets dispersed in perfluorinated oil. The signal was generated via a series of coupled enzyme reactions leading to the formation of fluorescein. Using this new method, we were able to enrich the yeast cell population by more than 35-fold for GOx mutants with higher than wild-type activity after two rounds of sorting, almost double the efficiency of our previously described flow cytometry platform. We identified and characterized novel GOx mutants, the most promising of which (M6) contained a combination of six point mutations that increased the catalytic constant kcat by 2.1-fold compared to wild-type GOx and by 1.4-fold compared to a parental GOx variant. The new microfluidic platform for GOx was therefore more sensitive than flow cytometry and supports comprehensive screens of gene libraries containing multiple mutations per gene.


Subject(s)
Glucose Oxidase/genetics , High-Throughput Screening Assays , Mutant Proteins/genetics , Saccharomyces cerevisiae/genetics , Directed Molecular Evolution , Flow Cytometry , Gene Library , Glucose Oxidase/chemistry , Glucose Oxidase/isolation & purification , Lab-On-A-Chip Devices , Mutagenesis/genetics , Mutant Proteins/isolation & purification , Protein Conformation , Protein Engineering , Saccharomyces cerevisiae/enzymology , Structure-Activity Relationship
14.
Enzyme Microb Technol ; 136: 109509, 2020 May.
Article in English | MEDLINE | ID: mdl-32331716

ABSTRACT

Azo dyes are toxic and carcinogenic synthetic pigments that accumulate as pollutants in aquatic bodies near textile factories. The pigments are structurally diverse, and bioremediation is mostly limited to single dye compounds or related groups. Versatile peroxidase (VP) from Pleurotus eryngii is a heme-containing peroxidase with a broad substrate spectrum that can break down many structurally distinct pollutants, including azo dyes. The utilization of this enzyme could be facilitated by engineering to modify its catalytic activity and substrate range. We used saturation mutagenesis to alter two amino acids in the catalytic tryptophan environment of VP (V160 and A260). Library screening with three azo dyes revealed that these two positions had a significant influence on substrate specificity. We were able to isolate and sequence VP variants with up to 16-fold higher catalytic efficiency for different azo dyes. The same approach could be used to select for VP variants that catalyze the degradation of many other types of pollutants. To allow multiple cycles of dye degradation, we immobilized VP on the surface of yeast cells and used washed cell wall fragments after lysis. VP embedded in the cell wall retained ∼70 % of its initial activity after 10 cycles of dye degradation each lasting 12 h, making this platform ideal for the bioremediation of environments contaminated with azo dyes.


Subject(s)
Azo Compounds/metabolism , Cell Wall/metabolism , Mutagenesis, Site-Directed/methods , Peroxidases/metabolism , Saccharomyces cerevisiae/metabolism , Biocatalysis , Biodegradation, Environmental , Coloring Agents/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Peroxidases/genetics , Substrate Specificity
15.
J Biosci Bioeng ; 129(6): 664-671, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32035791

ABSTRACT

Lignin peroxidase (LiP) is a heme-containing oxidoreductase that oxidizes structurally diverse substrates in an H2O2-dependent manner. Its ability to oxidize many pollutants makes it suitable for bioremediation applications and an ideal candidate for optimization by mutagenesis and selection. In order to increase oxidative stability of LiP we generated a random mutagenesis library comprising 106 mutated LiP genes and screened for expressed enzymes with higher than wild-type activity after incubation in 30 mM H2O2 by flow cytometry with fluorescein-tyramide as a substrate. To preserve the genotype-phenotype connection, the LiP mutants were displayed on the yeast cell surface. Two rounds of sorting were performed, recovered colonies were then screened in microtiter plates, and activity analysis revealed a significant increase in the percentage of cells expressing LiP variants with higher oxidative stability than wtLiP. Two rounds of sorting increased the proportion of more-stable variants from 1.4% in the original library to 52.3%. The most stable variants after two rounds of sorting featured between two and four mutations and retained up to 80% of initial activity after 1 h incubation in 30 mM H2O2. We for the first-time applied flow cytometry for screening of any ligninolytic peroxidase library. Obtained results suggest that developed system may be applied for improvement of industrially important characteristics of lignin peroxidase.


Subject(s)
Peroxidases/metabolism , Flow Cytometry , Gene Library , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Oxidative Stress , Peroxidases/genetics , Phanerochaete/enzymology , Phanerochaete/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
16.
Biotechnol Bioeng ; 117(1): 17-29, 2020 01.
Article in English | MEDLINE | ID: mdl-31520472

ABSTRACT

Enzymes are biological catalysts with many industrial applications, but natural enzymes are usually unsuitable for industrial processes because they are not optimized for the process conditions. The properties of enzymes can be improved by directed evolution, which involves multiple rounds of mutagenesis and screening. By using mathematical models to predict the structure-activity relationship of an enzyme, and by defining the optimal combination of mutations in silico, we can significantly reduce the number of bench experiments needed, and hence the time and investment required to develop an optimized product. Here, we applied our innovative sequence-activity relationship methodology (innov'SAR) to improve glucose oxidase activity in the presence of different mediators across a range of pH values. Using this machine learning approach, a predictive model was developed and the optimal combination of mutations was determined, leading to a glucose oxidase mutant (P1) with greater specificity for the mediators ferrocene-methanol (12-fold) and nitrosoaniline (8-fold), compared to the wild-type enzyme, and better performance in three pH-adjusted buffers. The kcat /KM ratio of P1 increased by up to 121 folds compared to the wild type enzyme at pH 5.5 in the presence of ferrocene methanol.


Subject(s)
Directed Molecular Evolution/methods , Glucose Oxidase , Machine Learning , Mutagenesis, Site-Directed/methods , Mutation , Amino Acid Sequence , Ferrous Compounds/metabolism , Glucose/metabolism , Glucose Oxidase/chemistry , Glucose Oxidase/genetics , Glucose Oxidase/metabolism , Hydrogen-Ion Concentration , Kinetics , Models, Statistical , Nitrosamines/metabolism
17.
Mol Divers ; 24(3): 593-601, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31154590

ABSTRACT

Cellobiose dehydrogenase (CDH, EC 1.1.99.18) from white rot fungi Phanerochaete chrysosporium can be used for constructing biosensors and biofuel cells, for bleaching cotton in textile industry, and recently, the enzyme has found an important application in biomedicine as an antimicrobial and antibiofilm agent. Stability and activity of the wild-type (wt) CDH and mutants at methionine residues in the presence of hydrogen peroxide were investigated. Saturation mutagenesis libraries were made at the only methionine in heme domain M65 and two methionines M685 and M738 in the flavin domain that were closest to the active site. After screening the libraries, three mutants with increased activity and stability in the presence of peroxide were found, M65F with 70% of residual activity after 6 h of incubation in 0.3 M hydrogen peroxide, M738S with 80% of residual activity and M685Y with over 90% of residual activity compared to wild-type CDH that retained 40% of original activity. Combined mutants showed no activity. The most stable mutant M685Y with 5.8 times increased half-life in the presence of peroxide showed also 2.5 times increased kcat for lactose compared to wtCDH and could be good candidate for applications in biofuel cells and biocatalysis for lactobionic acid production.


Subject(s)
Carbohydrate Dehydrogenases/genetics , Carbohydrate Dehydrogenases/metabolism , Peroxides/pharmacology , Protein Engineering , Carbohydrate Dehydrogenases/chemistry , Enzyme Stability/drug effects , Kinetics , Models, Molecular , Mutation , Oxidation-Reduction , Phanerochaete/enzymology , Protein Conformation
18.
Amino Acids ; 51(5): 829-838, 2019 May.
Article in English | MEDLINE | ID: mdl-30888541

ABSTRACT

Proteolytic enzymes are used for proteolysis and peptide synthesis which can be run in various conditions including low pH value and the presence of ethanol. The most common cysteine protease applied in acidic-alcoholic conditions is well-characterized papain. Ficin, which is closely related to papain in terms of proteolytic activity and substrate specificity, could potentially be applied in the alcoholic beverage industry and peptide synthesis. The aim of this study was to compare papain and ficin stability in process conditions. Comparative stability study showed that ficin as a mixture of different isoforms has a broader range of stability in respect of pH and cold storage stability, in comparison to papain. It retains about 70% of initial activity after 3-week cold storage at low pH and in the presence of ethanol. Unlike ficin, papain loses about 70% of initial activity in the same incubation period as it is more prone to non-native aggregation that was confirmed by FTIR analysis. The presence of multiple isoforms of ficin stabilizes the protease against cold denaturation and aggregation, making it more suitable for biotechnological and laboratory usage than single papain isoform. It is more cold-stable in alcoholic-acidic and acidic conditions suggesting possible replacement of papain with even lower enzyme concentration.


Subject(s)
Acids/chemistry , Ethanol/chemistry , Ficain/chemistry , Papain/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Protein Stability
19.
Protein Expr Purif ; 154: 25-32, 2019 02.
Article in English | MEDLINE | ID: mdl-30237128

ABSTRACT

Chitin is an abundant biopolymer found mainly in the exoskeleton of crustaceans and insects. The degradation of chitin using chitinases is one way to address the accumulation of chitin waste streams in the environment, and research has therefore focused on the identification, improvement and expression of suitable enzymes. Here we describe the production, purification and characterization of Bacillus licheniformis chitinase A in the Pichia pastoris expression system. Optimal enzyme activity occurred at pH 4.0-5.0 and within the temperature range 50-60 °C. With colloidal chitin as the substrate, the Km (2.307 mM) and Vmax (0.024 mM min-1) of the enzyme were determined using a 3,5-dinitrosalicylic acid assay. The degradation products of colloidal chitin and hexa-N-acetylchitohexaose were compared by thin-layer chromatography. The activity of the glycosylated enzyme produced in P. pastoris was compared with the in vitro deglycosylated and aglycosylated version produced in Escherichia coli. We showed that the glycosylated chitinase was more active than the deglycosylated and aglycosylated variants.


Subject(s)
Bacillus licheniformis , Bacterial Proteins , Chitinases , Bacillus licheniformis/enzymology , Bacillus licheniformis/genetics , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Chitinases/biosynthesis , Chitinases/chemistry , Chitinases/genetics , Chitinases/isolation & purification , Enzyme Stability , Hot Temperature , Hydrogen-Ion Concentration , Pichia/enzymology , Pichia/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
20.
J Biosci Bioeng ; 127(1): 30-37, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30033354

ABSTRACT

Glucose oxidase (GOx) mutants with higher activity or stability have important role in industry and in the development of biosensors and biofuel cells. Discovering these mutants can be time-consuming if appropriate high-throughput screening (HTS) systems are not available. GOx gene libraries were successfully screened and sorted using a HTS system based on GOx activity dependent fluorescent labeling of yeast cells with tyramids and quantification of the amount of expressed enzyme by yeast enhanced green fluorescent protein (yGFP) tagging and flow cytometry. For this purpose, we expressed wild type and a mutant GOx as a chimera with the yGFP to confirm differences in catalytic activity between wild-type and mutant GOx. Fluorescence of yGFP is preserved during expression of chimera, and also after the oxidative enzymatic reaction. We have obtained a 2.5-fold enrichment in population of cells expressing active enzyme, and percentage of enzyme variants with enzymatic mean activity higher than wild type activity was increased to 44% after a single round of GOx gene library sorting. We have found two mutants with 1.3 and 2.3-fold increase in Vmax values compared to the wtGOx. By simultaneous detection of protein expression level and enzyme activity we have increased the likelihood of finding GOx variants with increased activity in a single round of flow cytometry sorting.


Subject(s)
Directed Molecular Evolution/methods , Glucose Oxidase/genetics , Green Fluorescent Proteins/genetics , High-Throughput Screening Assays/methods , Recombinant Fusion Proteins/genetics , Aspergillus niger/enzymology , Bioelectric Energy Sources , Biosensing Techniques , Cloning, Molecular , Flow Cytometry , Gene Library , Glucose Oxidase/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...