Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 48(41): 15386-15396, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31257389

ABSTRACT

Two new neodymium molecular magnets of formula {[Nd(α-fur)3(H2O)2]·DMF}n (1) and {[Nd0.065La0.935(α-fur)3(H2O)2]}n (2), α-fur = C4H3OCOO, have been synthesized. In (1) the furoate ligands, in bidentate bridging mode, consolidate zig-zag chains running along the a-direction. Compound (2) is a magnetically diluted complex of a polymeric chain along the b-axis. Heat capacity, dc magnetization and ac susceptibility measurements have been performed from 1.8 K up to room temperature. Ab initio calculations yielded the gyromagnetic factors gx* = 0.52, gy* = 1.03, gz* = 4.41 for (1) and gx* = 1.35, gy* = 1.98, gz* = 3.88 for (2), and predicted energy gaps of Δ/kB = 125.5 K (1) and Δ/kB = 58.8 K (2). Heat capacity and magnetometry measurements agree with these predictions, and confirm the non-negligible transversal anisotropy of the Kramers doublet ground state. A weak intrachain antiferromagnetic interaction J'/kB = -3.15 × 10-3 K was found for (1). No slow relaxation is observed at H = 0, attributed to the sizable transverse anisotropy component, and/or dipolar or exchange interactions enhancing the quantum tunnelling probability. Under an external applied field as small as 80 Oe, two slow relaxation processes appear: above 3 K the first relaxation mechanism is associated to a combination of Orbach process, with a sizeable activation energy U/kB = 121 K at 1.2 kOe for (1), Raman and direct processes; the second, slowest relaxation mechanism is associated to a direct process, affected by phonon-bottleneck effect. For complex (2) a smaller U/kB = 61 K at 1.2 kOe is found, together with larger g*-transversal terms, and the low-frequency process is quenched. The reported complexes represent rare polymeric Nd single-ion magnets exhibiting high activation energies among the scarce Nd(iii) family.

2.
Dalton Trans ; 48(15): 5022-5034, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-30916067

ABSTRACT

We report the synthesis, crystal structure and magnetic properties of a new heteronuclear polymeric complex based on non-Kramers Tb ions and carboxylic α-fur = C4H3OCOO ligands: {[Tb2Ba(α-fur)8(H2O)4]·2H2O}n. The α-furoate ligands consolidate 1D zig-zag chains running along the c-axis, formed by Tb2 dimers separated by Ba ions. Ab initio calculations, in combination with the fit of experimental data, predict that the single-ion magnetic ground state is highly anisotropic () and consists of a quasi-doublet with a ΔTb/kB = 3.22 K gap, well separated from the next excited state, while the gap for the Tb2 dimer is Δ2Tb/kB = 2.58 K. Static magnetization and heat capacity measurements show that, magnetically, the system can be modeled as dimers of non-Kramers Tb ions, coupled by an antiferromagnetic intradimer interaction J'*/kB = -1.6 K. Dipolar interactions couple the Tb ions in the dimer with their first neighbour ions along the chain, with J''*/kB = -0.15 K, and with the surrounding ions out of the chain, with maximum J'''*/kB = -0.03 K. Ac susceptibility measurements in H = 0 performed down to 50 mK temperatures have enabled us to observe slow relaxation of magnetization, with an Orbach-like activation energy of U/kB = 1.1 K. It is assigned to the sluggish response of the 3D spin system due to a short-range ordering, possibly enhanced by the presence of disorder caused by defects in the polymeric chains. Under the application of a magnetic field, the system slowly relaxes by two distinct direct processes, strongly affected by a phonon bottleneck effect. We discuss the different relaxational phenomenology of the new complex in comparison with that of the isostructural {[Dy2Ba(α-fur)8(H2O)4]·2H2O}n, differing only in the Kramers nature of the ions, and the mononuclear {Ln(α-fur)3(H2O)3}n (Ln = Tb, Dy) complexes, previously reported.

3.
Dalton Trans ; 44(31): 14178, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26193067

ABSTRACT

Correction for 'Magnetic relaxation versus 3D long-range ordering in {Dy2Ba(α-fur)8}n furoate polymers' by E. Bartolomé et al., Dalton Trans., 2014, 43, 10999-11013.

4.
Dalton Trans ; 43(28): 10999-1013, 2014 Jul 28.
Article in English | MEDLINE | ID: mdl-24911469

ABSTRACT

A novel Dy-complex formulated as {[Dy2Ba(α-C4H3OCOO)8·(H2O)4]·2H2O}n, {Dy2Ba(α-fur)8}n, has been synthesized, structurally characterized, and magnetically and thermally investigated as a function of field and temperature, down to 85 mK. The α-furoate ligands consolidate 1D zig-zag chains formed by Dy2 dimers separated by Ba ions. Ab initio calculations were used to determine the easy anisotropy axis direction, the gyromagnetic tensor components and the energy levels of each Dy. The heat capacity and susceptibility measurements allowed us to conclude that intradimer and interdimer interactions are ferromagnetic and of the same order, J'/k(B) ≈ J''/k(B) = +0.55 K. In the absence of an applied magnetic field, the dynamic relaxation of the magnetization occurs through the fast (τ(T) ~ 10(-5) s) spin-reversal of each of the individual Dys through a quantum tunneling (QT) process. A long-range 3D ordered state is achieved at T(N) = 0.25 K, in which the ferromagnetically coupled zig-zag chains (J'/k(B) ≈ J''/k(B) = +0.528(1) K) running along the c-axis are antiferromagnetically coupled to the adjacent chains (J'''/k(B) = -0.021(1) K). Critical slowing down of the QT time constant is observed when the temperature approaches T(N). Under the application of a magnetic field, the QT relaxation is replaced by an Orbach process (with energy barrier U/k(B) = 68 K and τ0 ~ 10(-9) s at H = 2 kOe) and a very slow (τ(s) ∼ 0.2 s) relaxation process. We propose and demonstrate the proof of concept of a spintronic device, in which two different relaxation rates can be selected, and on/off switched by magnetic field biasing. The dynamical behavior of this compound is compared with another furoate to discuss the effect of competitive interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...