Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Osteoarthritis Cartilage ; 31(12): 1554-1566, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37742942

ABSTRACT

OBJECTIVE: There is no disease-modifying treatment for posttraumatic osteoarthritis (PTOA). This may be partly due to an incomplete understanding of synovitis, which has been causally linked to PTOA progression. The microscopic and transcriptomic changes in synovium seen in early- to mid-stage PTOA were evaluated to better characterize this knowledge gap. METHODS: Seventy-two Yucatan minipigs underwent transection of the anterior cruciate ligament (ACL). Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair, followed by microscopic synovium evaluation and RNA-sequencing at 1, 4, and 52 weeks. Six additional subjects received no ligament transection and served as 1- and 4-week controls and 12 contralateral knees served as 52-week controls. RESULTS: Synovial lining thickness, stromal cellularity, and overall microscopic synovitis reached their highest levels in the first few weeks following injury. Inflammatory infiltration continued to increase over the course of a year. Leaving the ACL transected, reconstructing the ligament, or repairing the ligament did not modulate synovitis development at 1, 4, or 52 weeks. Differential gene expression analysis of PTOA-affected synovium compared to control synovium revealed increased cell proliferation, angiogenesis, collagen breakdown, and diminished lipid metabolism at 1 and 4 weeks, and increased axonogenesis and focal adhesion with reduced immune activation at 52 weeks. CONCLUSIONS: Synovitis was present one year after ACL injury and was not alleviated by surgical intervention. Gene expression in early synovitis was characterized by cell proliferation, angiogenesis, proteolysis, and reduced lipolysis, which was followed by nerve growth and cellular adhesion with less immune activation at 52 weeks.


Subject(s)
Anterior Cruciate Ligament Injuries , Osteoarthritis , Synovitis , Animals , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Gene Expression Profiling , Osteoarthritis/metabolism , Swine , Swine, Miniature/genetics , Synovial Membrane/metabolism , Synovitis/metabolism , Transcriptome
2.
PLoS One ; 18(5): e0284777, 2023.
Article in English | MEDLINE | ID: mdl-37134114

ABSTRACT

To determine the transcriptomic changes seen in early- to mid-stage posttraumatic osteoarthritis (PTOA) development, 72 Yucatan minipigs underwent transection of the anterior cruciate ligament. Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair, followed by articular cartilage harvesting and RNA-sequencing at three different postoperative timepoints (1, 4, and 52 weeks). Six additional subjects received no ligament transection and provided cartilage tissue to serve as controls. Differential gene expression analysis between post-transection cartilage and healthy cartilage revealed an initial increase in transcriptomic differences at 1 and 4 weeks followed by a stark reduction in transcriptomic differences at 52 weeks. This analysis also showed how different treatments genetically modulate the course of PTOA following ligament disruption. Specific genes (e.g., MMP1, POSTN, IGF1, PTGFR, HK1) were identified as being upregulated in the cartilage of injured subjects across all timepoints regardless of treatment. At the 52-week timepoint, 4 genes (e.g., A4GALT, EFS, NPTXR, ABCA3) that-as far as we know-have yet to be associated with PTOA were identified as being concordantly differentially expressed across all treatment groups when compared to controls. Functional pathway analysis of injured subject cartilage compared to control cartilage revealed overarching patterns of cellular proliferation at 1 week, angiogenesis, ECM interaction, focal adhesion, and cellular migration at 4 weeks, and calcium signaling, immune system activation, GABA signaling, and HIF-1 signaling at 52 weeks.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular , Osteoarthritis , Animals , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament/metabolism , Anterior Cruciate Ligament Injuries/complications , Cartilage, Articular/metabolism , Gene Expression Profiling , Osteoarthritis/metabolism , Swine , Swine, Miniature/genetics , Transcriptome
3.
Bioengineering (Basel) ; 10(5)2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37237597

ABSTRACT

The relationship between cartilage and synovium is a rapidly growing area of osteoarthritis research. However, to the best of our knowledge, the relationships in gene expression between these two tissues have not been explored in mid-stage disease development. The current study compared the transcriptomes of these two tissues in a large animal model one year following posttraumatic osteoarthritis induction and multiple surgical treatment modalities. Thirty-six Yucatan minipigs underwent transection of the anterior cruciate ligament. Subjects were randomized to no further intervention, ligament reconstruction, or ligament repair augmented with an extracellular matrix (ECM) scaffold, followed by RNA sequencing of the articular cartilage and synovium at 52 weeks after harvest. Twelve intact contralateral knees served as controls. Across all treatment modalities, the primary difference in the transcriptomes was that the articular cartilage had greater upregulation of genes related to immune activation compared to the synovium-once baseline differences between cartilage and synovium were adjusted for. Oppositely, synovium featured greater upregulation of genes related to Wnt signaling compared to articular cartilage. After adjusting for expression differences between cartilage and synovium seen following ligament reconstruction, ligament repair with an ECM scaffold upregulated pathways related to ion homeostasis, tissue remodeling, and collagen catabolism in cartilage relative to synovium. These findings implicate inflammatory pathways within cartilage in the mid-stage development of posttraumatic osteoarthritis, independent of surgical treatment. Moreover, use of an ECM scaffold may exert a chondroprotective effect over gold-standard reconstruction through preferentially activating ion homeostatic and tissue remodeling pathways within cartilage.

4.
Sci Rep ; 13(1): 3524, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36864112

ABSTRACT

Non-invasive methods to document healing anterior cruciate ligament (ACL) structural properties could potentially identify patients at risk for revision surgery. The objective was to evaluate machine learning models to predict ACL failure load from magnetic resonance images (MRI) and to determine if those predictions were related to revision surgery incidence. It was hypothesized that the optimal model would demonstrate a lower mean absolute error (MAE) than the benchmark linear regression model, and that patients with a lower estimated failure load would have higher revision incidence 2 years post-surgery. Support vector machine, random forest, AdaBoost, XGBoost, and linear regression models were trained using MRI T2* relaxometry and ACL tensile testing data from minipigs (n = 65). The lowest MAE model was used to estimate ACL failure load for surgical patients at 9 months post-surgery (n = 46) and dichotomized into low and high score groups via Youden's J statistic to compare revision incidence. Significance was set at alpha = 0.05. The random forest model decreased the failure load MAE by 55% (Wilcoxon signed-rank test: p = 0.01) versus the benchmark. The low score group had a higher revision incidence (21% vs. 5%; Chi-square test: p = 0.09). ACL structural property estimates via MRI may provide a biomarker for clinical decision making.


Subject(s)
Anterior Cruciate Ligament , Machine Learning , Animals , Humans , Swine , Anterior Cruciate Ligament/diagnostic imaging , Anterior Cruciate Ligament/surgery , Prospective Studies , Reoperation , Swine, Miniature , Biomarkers
5.
Am J Sports Med ; 51(2): 413-421, 2023 02.
Article in English | MEDLINE | ID: mdl-36645042

ABSTRACT

BACKGROUND: Quantitative magnetic resonance imaging (qMRI) methods were developed to establish the integrity of healing anterior cruciate ligaments (ACLs) and grafts. Whether qMRI variables predict risk of reinjury is unknown. PURPOSE: To determine if qMRI measures at 6 to 9 months after bridge-enhanced ACL restoration (BEAR) can predict the risk of revision surgery within 2 years of the index procedure. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: Originally, 124 patients underwent ACL restoration as part of the BEAR I, BEAR II, and BEAR III prospective trials and had consented to undergo an MRI of the surgical knee 6 to 9 months after surgery. Only 1 participant was lost to follow-up, and 4 did not undergo MRI, leaving a total of 119 patients for this study. qMRI techniques were used to determine the mean cross-sectional area; normalized signal intensity; and a qMRI-based predicted failure load, which was calculated using a prespecified equation based on cross-sectional area and normalized signal intensity. Patient-reported outcomes (International Knee Documentation Committee subjective score), clinical measures (hamstring strength, quadriceps strength, and side-to-side knee laxity), and functional outcomes (single-leg hop) were also measured at 6 to 9 months after surgery. Univariate and multivariable analyses were performed to determine the odds ratios (ORs) for revision surgery based on the qMRI and non-imaging variables. Patient age and medial posterior tibial slope values were included as covariates. RESULTS: In total, 119 patients (97%), with a median age of 17.6 years, underwent MRI between 6 and 9 months postoperatively. Sixteen of 119 patients (13%) required revision ACL surgery. In univariate analyses, higher International Knee Documentation Committee subjective score at 6 to 9 months postoperatively (OR = 1.66 per 10-point increase; P = .035) and lower qMRI-based predicted failure load (OR = 0.66 per 100-N increase; P = .014) were associated with increased risk of revision surgery. In the multivariable model, when adjusted for age and posterior tibial slope, the qMRI-based predicted failure load was the only significant predictor of revision surgery (OR = 0.71 per 100 N; P = .044). CONCLUSION: Quantitative MRI-based predicted failure load of the healing ACL was a significant predictor of the risk of revision within 2 years after BEAR surgery. The current findings highlight the potential utility of early qMRI in the postoperative management of patients undergoing the BEAR procedure.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Reinjuries , Humans , Infant , Anterior Cruciate Ligament/surgery , Cohort Studies , Prospective Studies , Anterior Cruciate Ligament Injuries/surgery , Reinjuries/surgery , Anterior Cruciate Ligament Reconstruction/methods , Knee Joint/surgery , Magnetic Resonance Imaging , Biomarkers , Reoperation
6.
Am J Sports Med ; 51(1): 49-57, 2023 01.
Article in English | MEDLINE | ID: mdl-36412922

ABSTRACT

BACKGROUND: Anterior cruciate ligament (ACL) revision surgery is challenging for both patients and surgeons. Understanding the risk factors for failure after bridge-enhanced ACL restoration (BEAR) may help with patient selection for ACL restoration versus ACL reconstruction. PURPOSE: To identify the preoperative risk factors for ACL revision surgery within the first 2 years after BEAR. STUDY DESIGN: Case-control study; Level of evidence, 3. METHODS: Data from the prospective BEAR I, II, and III trials were used to determine the preoperative risk factors for ACL revision surgery. All patients with a complete ACL tear (aged 13-47 years, depending on the trial), who met all other inclusion/exclusion criteria and underwent a primary BEAR procedure within 30 to 50 days from the injury (dependent on the trial), were included. Demographic data (age, sex, body mass index), baseline patient-reported outcomes (International Knee Documentation Committee [IKDC] subjective score, Marx activity score), preoperative imaging results (ACL stump length, notch size, tibial slope), and intraoperative findings (knee hyperextension, meniscal status) were evaluated to determine their contribution to the risk of ipsilateral ACL revision surgery. RESULTS: A total of 123 patients, with a median age of 17.6 years (interquartile range, 16-23 years), including 67 (54%) female patients, met study criteria. Overall, 18 (15%) patients required ACL revision surgery in the first 2 years after the BEAR procedure. On bivariate analyses, younger age (P = .011), having a contact injury at the time of the initial tear (P = .048), and increased medial tibial slope (MTS; P = .029) were associated with a higher risk of ipsilateral revision surgery. Multivariable logistic regression analyses identified 2 independent predictors of revision: patient age and MTS. The odds of ipsilateral revision surgery were decreased by 32% for each 1-year increase in age (odds ratio, 0.684 [95% CI, 0.517-0.905]; P = .008) and increased by 28% for each 1° increase in MTS (odds ratio, 1.280 [95% CI, 1.024-1.601]; P = .030). Sex, baseline IKDC or Marx score, knee hyperextension, and meniscal status were not significant predictors of revision. CONCLUSION: Younger age and higher MTS were predictors of ipsilateral ACL revision surgery after the BEAR procedure. Younger patients with higher tibial slopes should be aware of the increased risk for revision surgery when deciding to undergo ACL restoration.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament , Humans , Female , Adolescent , Young Adult , Adult , Male , Anterior Cruciate Ligament/surgery , Prospective Studies , Reoperation , Case-Control Studies , Knee Joint/surgery , Anterior Cruciate Ligament Injuries/surgery , Risk Factors
7.
PLoS One ; 17(11): e0278338, 2022.
Article in English | MEDLINE | ID: mdl-36449506

ABSTRACT

The study objective was to determine if intraarticular injections of an extracellular matrix (ECM) powder and blood composite (ECM-B) would have a significant impact on post-operative gait parameters without eliciting adverse cartilage changes or severe lymphatic reactions in an idiopathic osteoarthritis (OA) model. Twenty-one Dunkin Hartley Guinea pigs received an intraarticular injection of ECM-B in each knee and were split into sub-groups for gait assessment and post-harvest knee evaluations at 1 week (n = 5), 2 weeks (n = 5), 4 weeks (n = 5), or 8 weeks (n = 6). The results were compared with a control group (n = 5), which underwent bilateral injections of phosphate-buffered saline (PBS), gait measurements at 1, 2, 4, and 8 weeks, and post-mortem knee evaluation at 8 weeks post-injection. Hind limbs and popliteal lymph nodes were collected at the Week 8 endpoint and underwent histological analysis by a veterinary pathologist. Significant improvement in hind limb base of support was observed in the ECM-B group compared to the control group at Week 4 but was no longer significant by Week 8. No significant differences were observed between control and ECM-B groups in hind limb cartilage, synovium, or popliteal lymph node histology at Week 8. In conclusion, administration of an ECM-B material may improve gait for a limited time without significant adverse effects on the cartilage, synovium, or local lymph nodes.


Subject(s)
Hydrogels , Osteoarthritis , Guinea Pigs , Animals , Osteoarthritis/drug therapy , Extracellular Matrix , Synovial Membrane , Injections, Intra-Articular
8.
Orthop J Sports Med ; 10(10): 23259671221127326, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36263311

ABSTRACT

Background: The cross-sectional area (CSA) of the anterior cruciate ligament (ACL) and reconstructed graft has direct implications on its strength and knee function. Little is known regarding how the CSA changes along the ligament length and how those changes vary between treated and native ligaments over time. Hypothesis: It was hypothesized that (1) the CSA of reconstructed ACLs and restored ACLs via bridge-enhanced ACL restoration (BEAR) is heterogeneous along the length. (2) Differences in CSA between treated and native ACLs decrease over time. (3) CSA of the surgically treated ACLs is correlated significantly with body size (ie, height, weight, body mass index) and knee size (ie, bicondylar and notch width). Study Design: Cohort study; Level of evidence, 2. Methods: Magnetic resonance imaging scans of treated and contralateral knees of 98 patients (n = 33 ACL reconstruction, 65 BEAR) at 6, 12, and 24 months post-operation were used to measure the ligament CSA at 1% increments along the ACL length (tibial insertion, 0%; femoral insertion, 100%). Statistical parametric mapping was used to evaluate the differences in CSA between 6 and 24 months. Correlations between body and knee size and treated ligament CSA along its length were also assessed. Results: Hamstring autografts had larger CSAs than native ACLs at all time points (P < .001), with region of difference decreasing from proximal 95% of length (6 months) to proximal 77% of length (24 months). Restored ACLs had larger CSAs than native ACLs at 6 and 12 months, with larger than native CSA only along a small midsubstance region at 24 months (P < .001). Graft CSA was correlated significantly with weight (6 and 12 months), bicondylar width (all time points), and notch width (24 months). Restored ACL CSA was significantly correlated with bicondylar width (6 months) and notch width (6 and 12 months). Conclusion: Surgically treated ACLs remodel continuously within the first 2 years after surgery, leading to ligaments/grafts with heterogeneous CSAs along the length, similar to the native ACL. While reconstructed ACLs remained significantly larger, the restored ACL had a CSA profile comparable with that of the contralateral native ACL. In addition to size and morphology differences, there were fundamental differences in factors contributing to CSA profile between the ACL reconstruction and BEAR procedures. Registration: NCT02664545 (ClinicalTrials.gov identifier).

9.
PLoS One ; 17(6): e0268198, 2022.
Article in English | MEDLINE | ID: mdl-35675298

ABSTRACT

The inflammatory response to joint injury has been thought to play a key role in the development of osteoarthritis. In this preclinical study, we hypothesized that synovial fluid presence of inflammatory cytokines, as well as altered loading on the injured leg, would be associated with greater development of macroscopic cartilage damage after an ACL injury. Thirty-six Yucatan minipigs underwent ACL transection and were randomized to: 1) no further treatment, 2) ACL reconstruction, or 3) scaffold-enhanced ACL restoration. Synovial fluid samples and gait data were obtained pre-operatively and at multiple time points post-operatively. Cytokine levels were measured using a multiplex assay. Macroscopic cartilage assessments were performed following euthanasia at 52 weeks. General estimating equation modeling found the presence of IL-1α, IL-1RA, IL-2, IL-4, IL-6, and IL-10 and MMP-2, MMP-3, MMP-12, and MMP-13 in the synovial fluid was associated with better cartilage outcomes. Higher peak pressure for the surgical hind leg and contralateral hind leg aligned with worse cartilage outcomes. A support vector machine built with synovial fluid and gait metrics also demonstrated cytokine presence was predictive of better cartilage outcomes. In conclusion, this preclinical analysis suggests that synovial fluid devoid of cytokines may be a possible indicator that cartilage is more at risk of becoming pathologic after joint injury.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular , Animals , Anterior Cruciate Ligament Injuries/pathology , Anterior Cruciate Ligament Injuries/surgery , Cartilage , Cartilage, Articular/pathology , Gait , Support Vector Machine , Swine , Swine, Miniature , Synovial Fluid
10.
Am J Sports Med ; 50(9): 2417-2423, 2022 07.
Article in English | MEDLINE | ID: mdl-35722806

ABSTRACT

BACKGROUND: Posttraumatic osteoarthritis (PTOA) is a common sequela of anterior cruciate ligament (ACL) injury, even when surgical treatment is selected. The effect of patient sex on cartilage health after ACL injury and surgical treatment has been less studied. PURPOSE/HYPOTHESIS: The study objective was to compare the macroscopic cartilage damage that develops after ACL surgery in male and female Yucatan minipigs. It was hypothesized that after ACL surgery, the macroscopic cartilage damage of the tibiofemoral joints from female animals would be greater than that from male animals. Additionally, it was hypothesized that the effect of sex on the macroscopic cartilage damage would depend on surgical treatment. STUDY DESIGN: Controlled laboratory study. METHODS: Twelve-month follow-up data were obtained for 55 adolescent Yucatan minipigs (22 female/33 male) that were randomized to 1 of 3 experimental groups: no treatment (ACL transection [ACLT]), ACL reconstruction, and bridge-enhanced ACL restoration. The Osteoarthritis Research Society International guidelines were used to determine a standardized macroscopic cartilage damage score on 5 surfaces of the knee joint. RESULTS: Females had significantly worse mean total macroscopic cartilage damage scores on the surgical side (adjusted P value [P adj] = .04) and significantly better scores on the contralateral side (P adj = .01) when compared with males. The trochlear damage scores were also significantly worse in females for surgical limbs (P adj = .009) and significantly better for the contralateral limbs (P adj < .001) when compared with males. Although there were no significant differences in total macroscopic cartilage damage scores between sexes within treatment groups on the surgical limbs (ACLT, P adj = 0.45; ACL reconstruction, P adj = .56; bridge-enhanced ACL restoration, P adj = .23), the mean trochlear scores on the surgical limb of females were significantly worse than those of the males in the ACLT group (P adj = .003). CONCLUSION: Mean total macroscopic cartilage damage scores of Yucatan minipigs were significantly worse in females than males, regardless of treatment. These differences were predominantly found in the trochlear scores across all treatment groups. CLINICAL RELEVANCE: These data suggest that patient sex could be more influential in the progression of PTOA than surgical treatment after ACL injury. Identifying factors responsible for this discrepancy may prove valuable to identify targets to slow PTOA progression in male and female ACL-injured populations.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular , Osteoarthritis, Knee , Osteoarthritis , Animals , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/surgery , Female , Knee Joint/surgery , Male , Osteoarthritis/etiology , Osteoarthritis, Knee/etiology , Osteoarthritis, Knee/surgery , Swine , Swine, Miniature
11.
Am J Transl Res ; 14(3): 1640-1651, 2022.
Article in English | MEDLINE | ID: mdl-35422952

ABSTRACT

The primary source of synovial fluid inflammatory mediators is currently unknown and may include different tissues comprising the joint, including the synovium and articular cartilage. Prior work in a porcine model has demonstrated that anterior cruciate ligament (ACL) surgery leads to significant changes in early gene expression in the synovium and articular cartilage, which are the same whether concomitant ligament restoration is performed or not. In this study, 36 Yucatan minipigs underwent ACL surgery, and a custom multiplex assay was used to measure synovial fluid protein levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-12, MMP-13, IL-1α, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-18, GM-CSF, and TNFα in 18 animals at 1 and 4 weeks after surgery. Linear regressions were used to evaluate the relationships between synovial fluid protein levels and the previously reported gene expression levels in the articular cartilage and synovium from the same animal cohort. Synovial fluid levels of MMP-13 and IL-6 were significantly correlated with synovial gene expression (P=.003 and P<.001 respectively), while IL-1α levels were significantly correlated with articular cartilage gene expression (P=.037). The synovium may be an important source of MMP-13 and IL-6, and the articular cartilage may be an important source of IL-1α in post-surgical inflammation. In developing treatments for post-surgical inflammation, the synovium may therefore be a promising target for modulating inflammatory mediators such as MMP-13 and IL-6 in the synovial fluid.

12.
Orthop J Sports Med ; 10(2): 23259671211070542, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35155707

ABSTRACT

BACKGROUND: Previous clinical studies have shown that psychological factors have significant effects on an athlete's readiness to return to sport after anterior cruciate ligament (ACL) reconstruction (ACLR). HYPOTHESIS: We hypothesized that patients who underwent bridge-enhanced ACL restoration (BEAR) would have higher levels of psychological readiness to return to sport compared with patients who underwent ACLR. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: A total of 100 patients (median age, 17 years; median preoperative Marx activity score, 16) with complete midsubstance ACL injuries were randomized to either the BEAR procedure (n = 65) or autograft ACLR (n = 35 [33 hamstring and 2 bone--patellar tendon-bone]) and underwent surgery within 45 days of injury. Objective, functional, and patient-reported outcomes, including the ACL--Return to Sport after Injury (ACL-RSI) scale, were assessed at 6, 12, and 24 months postoperatively. RESULTS: Patients who underwent the BEAR procedure had significantly higher ACL-RSI scores at 6 months compared with those who underwent ACLR (71.1 vs 58.2; P = .008); scores were similar at 12 and 24 months. Baseline factors independently predictive of higher ACL-RSI scores at 6 months were having a BEAR procedure and participating in level 1 sports prior to injury, explaining 15% of the variability in the scores. Regression analysis of baseline and 6-month outcomes as predictors indicated that the International Knee Documentation Committee (IKDC) score at 6 months explained 45% of the 6-month ACL-RSI variance. Subsequent analysis with IKDC excluded from the model indicated that decreased pain, increased hamstring and quadriceps strength in the surgical limb, and decreased side-to-side difference in anteroposterior knee laxity were significant predictors of a higher ACL-RSI score at 6 months, explaining 34% of the variability in scores. Higher ACL-RSI score at 6 months was associated with earlier clearance to return to sports. CONCLUSION: Patients who underwent the BEAR procedure had higher ACL-RSI scores at 6 months postoperatively. Better ACL-RSI scores at 6 months were related most strongly to higher IKDC scores at 6 months and were also associated with lower pain levels, better muscle recovery, and less knee laxity at 6 months. REGISTRATION: NCT02664545 (ClinicalTrials.gov identifier).

13.
J Orthop Res ; 40(3): 573-583, 2022 03.
Article in English | MEDLINE | ID: mdl-33913543

ABSTRACT

The objective was to determine if an intra-articular injection of an extracellular matrix (ECM) powder and blood composite (ECM-B) after anterior cruciate ligament (ACL) injury would have a mitigating effect on posttraumatic osteoarthritis and if that effect would be different with terminal sterilization of the ECM powder before use. Eighty Lewis rats underwent ACL transection and were divided into four groups: (1) intra-articular injection with phosphate-buffered saline (PBS; n = 20), (2) intra-articular injection of ECM-B using aseptically processed ECM (ASEPTIC; n = 20), (3) intra-articular injection of the ECM-busing ECM powder sterilized with 15 kGy electron beam irradiation (EBEAM; n = 20), and (4) intra-articular injection of the ECM-B using ECM powder sterilized with ethylene oxide (EO; n = 20). Twenty additional animals received capsulotomy only (SHAM). The animals were followed for 6 weeks and evaluations of gait, radiographs, and joint cartilage histology were performed. At 6 weeks, when compared to the SHAM group, the group treated with PBS had significantly worse gait and histologic changes, while the ASEPTIC group was not different from SHAM for either of these outcomes. When compared to the SHAM group, the EO group had similar gait outcomes, but greater histologic damage, and the EBEAM group had significantly worse gait and histological outcomes. The ECM-B composite produced using aseptically processed ECM powder mitigated the gait and histologic changes associated with osteoarthritis after ACL transection in the rat; however, care must be taken when selecting a terminal sterilization method as this may affect the effectiveness of treatment.


Subject(s)
Anterior Cruciate Ligament Injuries , Cartilage, Articular , Osteoarthritis , Animals , Anterior Cruciate Ligament Injuries/complications , Anterior Cruciate Ligament Injuries/pathology , Cartilage, Articular/pathology , Extracellular Matrix , Osteoarthritis/complications , Osteoarthritis/therapy , Powders/pharmacology , Rats , Rats, Inbred Lew , Sterilization/methods
14.
J Biomater Appl ; 36(6): 1011-1018, 2022 01.
Article in English | MEDLINE | ID: mdl-34607497

ABSTRACT

Sterilization of medical devices is commonly performed using radiation methods. However, collagen materials can be damaged when using standard radiation doses (25 kGy). Small increases of radiation dose can allow for increases in the acceptable initial bioburden load of aseptically manufactured devices while maintaining required sterility assurance levels, which is often critical in early stage translational settings. In this study, we hypothesized that small increases in radiation dose from 15 to 20 kGy would result in significant changes to several key characteristics of collagen scaffolds. Scaffolds were manufactured by lyophilizing the pepsin digest of dense bovine connective tissue in cylindrical molds and were irradiated at either 0, 15, 17.5, or 20 kGy with an additional group packaged in nitrogen and irradiated at 17.5 kGy. Groups were evaluated for changes to the soluble collagen and glycosaminoglycan mass fractions, protein banding patterns in electrophoresis, a collagen fragmentation assay, and resistance to enzymatic degradation. All parameters were statistically analyzed using one-way analysis of variance with Tukey's correction for multiple comparisons. The soluble collagen mass fraction was significantly decreased in the 20 kGy group; however, there was no significant effect of radiation dose or a nitrogen-rich environment on the other measured parameters, including protein banding patterns, fragmented collagen content, and resistance to enzymatic degradation.Statement of Clinical Significance: Collagen scaffolds have proven useful in clinical applications but can be damaged by standard radiation doses. Low-dose sterilization may be a viable alternative that minimally impacts key properties of these scaffolds.


Subject(s)
Nitrogen , Sterilization , Animals , Cattle , Collagen , Gamma Rays , Radiation Dosage , Sterilization/methods
15.
Orthop J Sports Med ; 9(11): 23259671211052530, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34778483

ABSTRACT

BACKGROUND: Bridge-enhanced anterior cruciate ligament repair (BEAR) has noninferior patient-reported outcomes when compared with autograft anterior cruciate ligament reconstruction (ACLR) at 2 years. However, the comparison of BEAR and autograft ACLR at earlier time points-including important outcomes such as resolution of knee pain and symptoms, recovery of strength, and return to sport-has not yet been reported. HYPOTHESIS: It was hypothesized that the BEAR group would have higher outcomes on the International Knee Documentation Committee and Knee injury and Osteoarthritis Outcome Score, as well as improved muscle strength, in the early postoperative period. STUDY DESIGN: Randomized controlled trial; Level of evidence, 1. METHODS: A total of 100 patients aged 13 to 35 years with complete midsubstance anterior cruciate ligament injuries were randomized to receive a suture repair augmented with an extracellular matrix implant (n = 65) or an autograft ACLR (n = 35). Outcomes were assessed at time points up to 2 years postoperatively. Mixed-model repeated-measures analyses were used to compare BEAR and ACLR outcomes. Patients were unblinded after their 2-year visit. RESULTS: Repeated-measures testing revealed a significant effect of group on the International Knee Documentation Committee Subjective Score (P = .015), most pronounced at 6 months after surgery (BEAR = 86 points vs ACLR = 78 points; P = .001). There was a significant effect of group on the Knee injury and Osteoarthritis Outcome Score-Symptoms subscale scores (P = .010), largely attributed to the higher BEAR scores at the 1-year postoperative time point (88 vs 82; P = .009). The effect of group on hamstring strength was significant in the repeated-measures analysis (P < .001), as well as at all postoperative time points (P < .001 for all comparisons). At 1 year after surgery, approximately 88% of the patients in the BEAR group and 76% of the ACLR group had been cleared for return to sport (P = .261). CONCLUSION: Patients undergoing the BEAR procedure had earlier resolution of symptoms and increased satisfaction about their knee function, as well as improved resolution of hamstring muscle strength throughout the 2-year follow-up period. REGISTRATION: NCT02664545 (ClinicalTrials.gov identifier).

16.
Am J Sports Med ; 49(14): 3833-3841, 2021 12.
Article in English | MEDLINE | ID: mdl-34668789

ABSTRACT

BACKGROUND: Magnetic resonance-based measurements of signal intensity have been used to track healing of surgically treated anterior cruciate ligaments (ACLs). However, it is unknown how the signal intensity values in different regions of the ligament or graft change during healing. HYPOTHESES: (1) Normalized signal intensity of the healing graft or repaired ACL is heterogeneous; (2) temporal changes in normalized signal intensity values differ among the tibial, middle, and femoral regions; and (3) there are no differences in regional normalized signal intensity values 2 years postoperatively among grafts, repaired ACLs, and contralateral native ACLs. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: Magnetic resonance imaging scans were analyzed from patients in a trial comparing ACL reconstruction (n = 35) with bridge-enhanced ACL repair (n = 65). The ACLs were segmented from images acquired at 6, 12, and 24 months postoperatively and were partitioned into 3 sections along the longitudinal axis (femoral, middle, and tibial). Linear mixed modeling was used to compare location-specific differences in normalized ligament signal intensity among time points (6, 12, and 24 months) and groups (ACL reconstruction, repair, and contralateral native ACL). RESULTS: For grafts, the middle region had a higher mean normalized signal intensity when compared with the femoral region at all time points (P < .01) but compared with the tibial region only at 6 months (P < .01). For repaired ACLs, the middle region had a higher mean normalized signal intensity versus the femoral region at all time points (P < .01) but versus the tibial region only at 6 and 12 months (P < .04). From 6 to 24 months, the grafts showed the greatest reduction in normalized signal intensity in the femoral and middle regions (vs tibial regions; P < .01), while there were no regional differences in repaired ACLs. At 2 years after surgery, repaired ACLs had a lower normalized signal intensity in the tibial region as compared with reconstructed grafts and contralateral native ACLs (P < .01). CONCLUSION: The results suggest that graft remodeling is location specific. Repaired ACLs were more homogeneous, with lower or comparable normalized signal intensity values at 2 years as compared with the contralateral native ACL and reconstructed grafts.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Cohort Studies , Humans , Magnetic Resonance Imaging , Tibia/diagnostic imaging , Tibia/surgery
17.
Am J Transl Res ; 13(7): 7667-7676, 2021.
Article in English | MEDLINE | ID: mdl-34377243

ABSTRACT

The roles that cytokines and matrix metalloproteinases play in the onset and progression of posttraumatic osteoarthritis (PTOA) remain a topic of debate. The study objective was to evaluate the concentrations of these inflammatory mediators during the development of mild to moderate PTOA in the porcine anterior cruciate ligament (ACL) surgical model. We hypothesized that there would be more animals with detectable mediators in the pigs that develop moderate PTOA (those receiving ACL reconstruction or untreated ACL transection) compared to those that develop mild PTOA (those receiving scaffold-enhanced ACL repair). 36 Yucatan minipigs underwent ACL transection and were randomized to: 1) no further treatment, 2) ACL reconstruction, or 3) scaffold-enhanced ACL repair. Synovial fluid samples were obtained pre-operatively, and at 1, 4, 12, 26 and 52 weeks post-operatively. The concentrations of inflammatory mediator in the synovial fluid samples were evaluated via multiplex assay. Macroscopic cartilage assessments were performed following euthanasia at 52 weeks. As found in prior studies, the repair group had significantly less cartilage damage than either the ACL transected or ACL reconstruction groups (P<.03). The presence and concentrations of the biomarkers were influenced by surgical group and time. In general, the concentrations of inflammatory mediators were higher in the repair group, which exhibited less cartilage damage than the other two treatment groups. While this finding disproved the hypotheses, these data suggest that the metabolic activity of the joints exhibiting less cartilage damage remained higher over the 52-week period than those that did not.

18.
PLoS One ; 16(8): e0256765, 2021.
Article in English | MEDLINE | ID: mdl-34437631

ABSTRACT

Anterior cruciate ligament injuries result in posttraumatic osteoarthritis in the medial compartment of the knee, even after surgical treatment. How the chondrocyte distribution within the articular cartilage changes early in this process is currently unknown. The study objective was to investigate the chondrocyte distribution within the medial femoral condyle after an anterior cruciate ligament transection in a preclinical model. Forty-two adolescent Yucatan minipigs were allocated to receive unilateral anterior cruciate ligament surgery (n = 36) or no surgery (n = 6). Central coronal sections of the medial femoral condyle were obtained at 1- and 4 weeks after surgery, and the chondrocyte distribution was measured via whole slide imaging and a cell counting batch processing tool utilized in ImageJ. Ki-67 immunohistochemistry was performed to identify proliferating cells. Empty lacunae, karyolysis, karyorrhexis, and pyknosis were used to identify areas of irreversible cell injury. The mean area of irreversible cell injury was 0% in the intact controls, 13.4% (95% confidence interval: 6.4, 20.3) at 1-week post-injury and 19.3% (9.7, 28.9) at 4 weeks post-injury (p < .015). These areas occurred closest to the femoral intra-articular notch. The remaining areas containing viable chondrocytes had Ki-67-positive cells (p < .02) and increased cell density in the middle (p < .03) and deep zones (p = .001). For the entire section, the total chondrocyte number did not change significantly post-operatively; however, the density of cells in the peripheral regions of the medial femoral condyle increased significantly at 1- and 4 weeks post-injury relative to the intact control groups (p = .032 and .004, respectively). These data demonstrate a peripheral shift in the viable chondrocyte population of the medial femoral condyle after anterior cruciate ligament injury and further suggest that chondrocytes with the capacity to proliferate are not confined to one particular cartilage layer.


Subject(s)
Anterior Cruciate Ligament Injuries/pathology , Chondrocytes/pathology , Femur/pathology , Knee Joint/pathology , Animals , Cell Count , Cell Survival , Ki-67 Antigen/metabolism , Swine
19.
Am J Sports Med ; 49(3): 667-674, 2021 03.
Article in English | MEDLINE | ID: mdl-33534613

ABSTRACT

BACKGROUND: The extent of posttraumatic osteoarthritis (PTOA) in the porcine anterior cruciate ligament (ACL) transection model is dependent on the surgical treatment selected. In a previous study, animals treated with bridge-enhanced ACL repair using a tissue-engineered implant developed less PTOA than those treated with ACL reconstruction (ACLR). Alterations in gait, including asymmetric weightbearing and shorter stance times, have been noted in clinical studies of subjects with osteoarthritis. HYPOTHESIS: Animals receiving a surgical treatment that results in less PTOA (ie, bridge-enhanced ACL repair) would exhibit fewer longitudinal postoperative gait asymmetries over a 1-year period when compared with treatments that result in greater PTOA (ie, ACLR and ACL transection). STUDY DESIGN: Controlled laboratory study. METHODS: Thirty-six Yucatan minipigs underwent ACL transection and were randomized to receive (1) no further treatment, (2) ACLR, or (3) bridge-enhanced ACL repair. Gait analyses were performed preoperatively, and at 4, 12, 26, and 52 weeks postoperatively. Macroscopic cartilage assessments were performed at 52 weeks. RESULTS: Knees treated with bridge-enhanced ACL repair had less macroscopic damage in the medial tibial plateau than those treated with ACLR or ACL transection (adjusted P = .03 for both comparisons). The knees treated with bridge-enhanced ACL repair had greater asymmetry in hindlimb maximum force and impulse loading at 52 weeks than the knees treated with ACL transection (adjusted P < .05 for both comparisons). Although not significant, there was a trend that knees treated with bridge-enhanced ACL repair had greater asymmetry in hindlimb maximum force and impulse loading (adjusted P < .10 for both comparisons) compared with ACLR. CONCLUSION: Contrary to our hypothesis, the surgical treatment resulting in less macroscopic cartilage damage (ie, bridge-enhanced ACL repair) exhibited greater asymmetry in load-related gait parameters than the other surgical groups. This finding suggests that increased offloading of the surgical knee may be associated with a slower rate of PTOA development. CLINICAL RELEVANCE: Less cartilage damage at 52 weeks was found in the surgical group that continued to protect the limb from full body weight during gait. This finding suggests that protection of the knee from maximum stresses may be important in minimizing the development of PTOA in the ACL-injured knee within 1 year.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Animals , Anterior Cruciate Ligament/surgery , Anterior Cruciate Ligament Injuries/surgery , Biomechanical Phenomena , Knee Joint/surgery , Swine , Swine, Miniature
20.
Orthop J Sports Med ; 9(12): 23259671211063836, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34988237

ABSTRACT

BACKGROUND: Little is known about sex-based differences in anterior cruciate ligament (ACL) tissue quality in vivo or the association of ACL size (ie, volume) and tissue quality (ie, normalized signal intensity on magnetic resonance imaging [MRI]) with knee anatomy. HYPOTHESIS: We hypothesized that (1) women have smaller ACLs and greater ACL normalized signal intensity compared with men, and (2) ACL size and normalized signal intensity are associated with age, activity levels, body mass index (BMI), bicondylar width, intercondylar notch width, and posterior slope of the lateral tibial plateau. STUDY DESIGN: Cross-sectional study; Level of evidence, 3. METHODS: Knee MRI scans of 108 unique ACL-intact knees (19.7 ± 5.5 years, 62 women) were used to quantify the ACL signal intensity (normalized to cortical bone), ligament volume, mean cross-sectional area, and length. Independent t tests were used to compare the MRI-based ACL parameters between sexes. Univariate and multivariate linear regression analyses were used to investigate the associations between normalized signal intensity and size with age, activity levels, BMI, bicondylar width, notch width, and posterior slope of the lateral tibial plateau. RESULTS: Compared with men, women had significantly smaller mean ACL volume (men vs women: 2028 ± 472 vs 1591 ± 405 mm3), cross-sectional area (49.4 ± 9.6 vs 41.5 ± 8.6 mm2), and length (40.8 ± 2.8 vs 38.1 ± 3.1 mm) (P < .001 for all), even after adjusting for BMI and bicondylar width. There was no difference in MRI signal intensity between men and women (1.15 ± 0.24 vs 1.12 ± 0.24, respectively; P = .555). BMI, bicondylar width, and intercondylar notch width were independently associated with a larger ACL (R 2 > 0.16, P < .001). Younger age and steeper lateral tibial slope were independently associated with shorter ACL length (R 2 > 0.03, P < .04). The combination of BMI and bicondylar width was predictive of ACL volume and mean cross-sectional area (R 2 < 0.3). The combination of BMI, bicondylar width, and lateral tibial slope was predictive of ACL length (R 2 = 0.39). Neither quantified patient characteristics nor anatomic variables were associated with signal intensity. CONCLUSION: Men had larger ACLs compared with women even after adjusting for BMI and knee size (bicondylar width). No sex difference was observed in signal intensity, suggesting no difference in tissue quality. The association of the intercondylar notch width and lateral tibial slope with ACL size suggests that the influence of these anatomic features on ACL injury risk may be partially explained by their effect on ACL size. REGISTRATION: NCT02292004 and NCT02664545 (ClinicalTrials.gov identifier).

SELECTION OF CITATIONS
SEARCH DETAIL
...