Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heredity (Edinb) ; 101(1): 60-6, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18446183

ABSTRACT

Resistin has been associated with inflammation and risk for cardiovascular disease. We previously reported evidence of a QTL on chromosome 19p13 affecting the abundance of resistin (RETN) mRNA in the omental adipose tissue of baboons (L0D score 3.8). In this study, whole genome transcription levels were assessed in human lymphocyte samples from 1240 adults participating in the San Antonio Family Heart Study, using the Sentrix Human-6 Expression Beadchip. Lymphocytes were surveyed, as it has been proposed that their expression levels may reflect those in harder to ascertain tissues, such as adipose tissue, that are thought to be more directly relevant to disease procesn was conducted to detect loci affecting RETN mRNA levels. We obtained significant evidence for a QTL influencing the RETN expression (LOD score 10.7) on chromosome 19p. This region is orthologous/homologous to the region previously localized on baboon chromosome 19. The strongest positional candidate gene in this region is the structural gene for resistin, itself. We also found evidence for a QTL influencing resistin protein levels (LOD score 5.3) on chromosome 14q. This differs from our previously reported QTL on chromosome 18 in baboons. The different QTLs for circulating protein suggests that post-translational processing and turnover may be influenced by different or multiple genes in baboons and humans. The parallel findings of a cis-eQTL for RETN mRNA in baboon omental tissue and human lymphocytes lends support to the strategy of using lymphocyte gene expression levels as a surrogate for gene expression levels in other tissues.


Subject(s)
Lymphocytes/chemistry , Quantitative Trait Loci , RNA, Messenger/analysis , Resistin/analysis , Resistin/genetics , Adipose Tissue/metabolism , Animals , Genome, Human , Humans , Mexican Americans , Microsatellite Repeats , Papio , Texas
2.
Heredity (Edinb) ; 100(4): 382-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18285814

ABSTRACT

To detect and localize the effects of genes influencing variation in adiponectin mRNA and protein levels, we conducted statistical genetic analyses of circulating concentrations of adiponectin and adiponectin (ADIPOQ) mRNA expression in omental adipose tissue in adult, pedigreed baboons (Papio anubis). An omental adipose tissue biopsy and blood sample were collected from 427 baboons from the colony at the Southwest Foundation for Biomedical Research, San Antonio, TX. Total RNA was isolated from adipose tissue and adiponectin mRNA levels were assayed by real-time, quantitative reverse transcriptase-PCR. Adiponectin, insulin, glucose, cholesterol, high-density lipoproteins and triglycerides were measured in fasting serum. Quantitative genetic analyses were conducted for adiponectin mRNA and serum protein using a maximum likelihood-based variance decomposition approach. A genome-wide linkage analysis was conducted using adiponectin mRNA and protein levels as phenotypes. Significant heritability was estimated for ADIPOQ mRNA levels (h2=0.19+/-0.07, P=0.01) and protein levels (h2=0.28+/-0.14, P=0.003). Genetic correlations were found between adiponectin protein and body weight (rho(G)=-0.51, P=0.03), cell volume (rho(G)=-0.73, P=0.04), serum triglycerides (rho(G)=-0.67, P=0.03), and between adiponectin mRNA and glucose (rho(G)=0.93, P<0.01). A logarithm of odds score of 2.9 was found for ADIPOQ mRNA levels on baboon chromosome 4p, which is orthologous to human 6p21. There is a significant genetic component affecting variation in the analyzed traits, and common genes may be influencing adiponectin expression, adipocyte volume, body weight and circulating triglycerides. The region on 6p21 has been linked to diabetes-related phenotypes in human studies.


Subject(s)
Adipocytes/metabolism , Adiponectin/genetics , Genetic Variation , Adipocytes/chemistry , Adiponectin/blood , Adipose Tissue/chemistry , Adipose Tissue/metabolism , Amino Acid Sequence , Animals , Base Sequence , Chromosomes, Mammalian , Female , Genome , Humans , Male , Metabolic Diseases/genetics , Molecular Sequence Data , Papio , Quantitative Trait Loci , RNA, Messenger/metabolism , Sequence Alignment
3.
Cytokine ; 41(2): 150-4, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18164624

ABSTRACT

Baboons show significant variation in body weight and composition, coupled with insulin resistance and phenotypes associated with the metabolic syndrome. An omental adipose tissue biopsy and a fasting blood sample were collected from 40 unrelated adult baboons from the colony at Southwest Foundation for Biomedical Research in San Antonio, TX. Serum was separated for analyses of circulating levels of glucose, insulin, adiponectin, resistin, interleukin 6 (IL-6) and monocyte chemoattractant protein-1 (MCP-1 or CCL-2). Adipose tissue biopsies were analyzed for cell volume and number. Total RNA was isolated from adipose tissue and adiponectin, resistin, delta-resistin, MCP-1 and IL-6 mRNA abundance were measured using real time, quantitative RT-PCR. Partial correlation coefficients were calculated among adipokine expression, fat tissue cell volume, and circulating levels of proteins. Cell volume was significantly correlated with expression of MCP-1 (r=0.44, p<0.05) and IL-6 mRNA (r=0.47, p<0.01). A step wise regression analysis was conducted with adipose tissue cell volume as dependent variable. The model identified IL-6 mRNA levels in adipose tissue as the only predictor. These observations support the role of IL-6 as a possible paracrine regulator in adipose tissue.


Subject(s)
Adipocytes/cytology , Adipokines/biosynthesis , Animals , Cell Size , Female , Interleukin-6/biosynthesis , Male , Omentum/cytology , Papio hamadryas , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...