Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mammal ; 105(3): 481-489, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38812925

ABSTRACT

Dispersal is an important process that is widely studied across species, and it can be influenced by intrinsic and extrinsic factors. Intrinsic factors commonly assessed include the sex and age of individuals, while landscape features are frequently-tested extrinsic factors. Here, we investigated the effects of both sex and landscape composition and configuration on genetic distances among bare-nosed wombats (Vombatus ursinus)-one of the largest fossorial mammals in the world and subject to habitat fragmentation, threats from disease, and human persecution including culling as an agricultural pest. We analyzed a data set comprising 74 Tasmanian individuals (30 males and 44 females), genotyped for 9,064 single-nucleotide polymorphisms. We tested for sex-biased dispersal and the influence of landscape features on genetic distances including land use, water, vegetation, elevation, and topographic ruggedness. We detected significant female-biased dispersal, which may be related to females donating burrows to their offspring due to the energetic cost of excavation, given their large body sizes. Land use, waterbodies, and elevation appeared to be significant landscape predictors of genetic distance. Land use potentially reflects land clearing and persecution over the last 200 years. If our findings based on a limited sample size are valid, retention and restoration of nonanthropogenic landscapes in which wombats can move and burrow may be important for gene flow and maintenance of genetic diversity.

2.
Nat Ecol Evol ; 8(2): 293-303, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38191839

ABSTRACT

Top predator declines are pervasive and often have dramatic effects on ecological communities via changes in food web dynamics, but their evolutionary consequences are virtually unknown. Tasmania's top terrestrial predator, the Tasmanian devil, is declining due to a lethal transmissible cancer. Spotted-tailed quolls benefit via mesopredator release, and they alter their behaviour and resource use concomitant with devil declines and increased disease duration. Here, using a landscape community genomics framework to identify environmental drivers of population genomic structure and signatures of selection, we show that these biotic factors are consistently among the top variables explaining genomic structure of the quoll. Landscape resistance negatively correlates with devil density, suggesting that devil declines will increase quoll genetic subdivision over time, despite no change in quoll densities detected by camera trap studies. Devil density also contributes to signatures of selection in the quoll genome, including genes associated with muscle development and locomotion. Our results provide some of the first evidence of the evolutionary impacts of competition between a top predator and a mesopredator species in the context of a trophic cascade. As top predator declines are increasing globally, our framework can serve as a model for future studies of evolutionary impacts of altered ecological interactions.


Subject(s)
Marsupialia , Animals , Marsupialia/genetics , Metagenomics , Population Dynamics , Food Chain
4.
Sci Rep ; 11(1): 12534, 2021 06 15.
Article in English | MEDLINE | ID: mdl-34131199

ABSTRACT

Although roads are widely seen as dispersal barriers, their genetic consequences for animals that experience large fluctuations in population density are poorly documented. We developed a spatially paired experimental design to assess the genetic impacts of roads on cyclic voles (Microtus arvalis) during a high-density phase in North-Western Spain. We compared genetic patterns from 15 paired plots bisected by three different barrier types, using linear mixed models and computing effect sizes to assess the importance of each type, and the influence of road features like width or the age of the infrastructure. Evidence of effects by roads on genetic diversity and differentiation were lacking. We speculate that the recurrent (each 3-5 generations) episodes of massive dispersal associated with population density peaks can homogenize populations and mitigate the possible genetic impact of landscape fragmentation by roads. This study highlights the importance of developing spatially replicated experimental designs that allow us to consider the large natural spatial variation in genetic parameters. More generally, these results contribute to our understanding of the not well explored effects of habitat fragmentation on dispersal in species showing "boom-bust" dynamics.


Subject(s)
Arvicolinae/genetics , Genetics, Population , Reproductive Isolation , Animals , Arvicolinae/physiology , Ecosystem , Genetic Variation/genetics , Population Density , Population Dynamics , Rodentia/genetics
5.
Mol Ecol ; 30(8): 1777-1790, 2021 04.
Article in English | MEDLINE | ID: mdl-33590590

ABSTRACT

While the effects of climate (long-term, prevailing weather) on species abundance, range and genetic diversity have been widely studied, short-term, localized variations in atmospheric conditions (i.e., weather) can also rapidly alter species' geographical ranges and population sizes, but little is known about how they affect genetic diversity. We investigated the relationship between weather and range-wide genetic diversity in a marsupial, Bettongia gaimardi, using dynamic species distribution models (SDMs). Genetic diversity was lower in parts of the range where the weather-based SDM predicted high variability in probability of B. gaimardi occurrence during 1950-2009. This is probably an effect of lower population sizes and extinction-recolonization cycles in places with highly variable weather. Spatial variation in genetic diversity was also better predicted by mean probabilities of B. gaimardi occurrence from weather- than climate-based SDMs. Our results illustrate the importance of weather in driving population dynamics and species distributions on decadal timescales and thereby in affecting genetic diversity. Modelling the links between changing weather patterns, species distributions and genetic diversity will allow researchers to better forecast biological impacts of climate change.


Subject(s)
Climate Change , Weather , Animals , Ecosystem , Genetic Variation , Population Dynamics , Potoroidae
6.
Proc Biol Sci ; 288(1942): 20201194, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33402069

ABSTRACT

Alien mammalian carnivores have contributed disproportionately to global loss of biodiversity. In Australia, predation by the feral cat and red fox is one of the most significant causes of the decline of native vertebrates. To discover why cats have greater impacts on prey than native predators, we compared the ecology of the feral cat to a marsupial counterpart, the spotted-tailed quoll. Individual prey are 20-200 times more likely to encounter feral cats, because of the combined effects of cats' higher population densities, greater intensity of home-range use and broader habitat preferences. These characteristics also mean that the costs to the prey of adopting anti-predator behaviours against feral cats are likely to be much higher than adopting such behaviours in response to spotted-tailed quolls, due to the reliability and ubiquity of feral cat cues. These results help explain the devastating impacts of cats on wildlife in Australia and other parts of the world.


Subject(s)
Animals, Wild , Ecosystem , Animals , Australia , Cats , Population Density , Predatory Behavior , Reproducibility of Results
7.
Evol Appl ; 12(6): 1114-1123, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31293627

ABSTRACT

Island populations can represent genetically distinct and evolutionarily important lineages relative to mainland conspecifics. However, phenotypic divergence of island populations does not necessarily reflect genetic divergence, particularly for lineages inhabiting islands periodically connected during Pleistocene low sea stands. Marine barriers may also not be solely responsible for any divergence that is observed. Here, we investigated genetic divergence among and within the three phenotypically distinct subspecies of bare-nosed wombats (Vombatus ursinus) in south-east Australia that are presently-but were not historically-isolated by marine barriers. Using genome-wide single nucleotide polymorphisms, we identified three genetically distinct groups (mainland Australia, Bass Strait island, and Tasmania) corresponding to the recognized subspecies. However, isolation by distance was observed in the Tasmanian population, indicating additional constraints on gene flow can contribute to divergence in the absence of marine barriers, and may also explain genetic structuring among fragmented mainland populations. We additionally confirm origins and quantify the genetic divergence of an island population 46 years after the introduction of 21 individuals from the Vulnerable Bass Strait subspecies. In the light of our findings, we make recommendations for the maintenance of genetic variation and fitness across the species range.

8.
Ecol Evol ; 9(24): 14005-14014, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31938498

ABSTRACT

Studies of impacts of fragmentation have focused heavily on measures of species presence or absence in fragments, or species richness in relation to fragmentation, but have often not considered the effects of fragmentation on ranging behavior of individual species. Effective management will benefit from knowledge of the effects of fragmentation on space use by species.We investigated how a woodland specialist, the eastern bettong (Bettongia gaimardi), responded to fragmentation in an agricultural landscape, the Midlands region of Tasmania, Australia. We tested whether individual bettongs could adjust home range size to maintain access to essential habitat across three sites differing in degree of fragmentation.We used GPS tracking to measure the home ranges of individual bettongs. Our models tested the effects of habitat aggregation and habitat amount measured at two radii comparable to a typical core range (250 m) and a typical home range (750 m), and habitat quality and sex on individual home range. We also tested the relationship between fragmentation on woodland used to determine whether individuals could compensate for fragmentation.Depending on the spatial scale of fragmentation measured, bettongs altered their movement to meet their habitat requirements. Our top model suggested that at the core range scale, individuals had smaller ranges when habitat is more aggregated. The second model showed support for habitat amount at the core range, suggesting individuals can occupy larger areas when there is a higher amount of habitat, regardless of configuration.Species that are relatively mobile may be able to compensate for the effects of habitat fragmentation by altering their movement. We highlight that any patch size is of value within a home range and management efforts should focus on maintaining sufficient habitat especially at the core range scale.

SELECTION OF CITATIONS
SEARCH DETAIL
...