Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Metab Brain Dis ; 4(4): 225-37, 1989 Dec.
Article in English | MEDLINE | ID: mdl-2601641

ABSTRACT

A new thin-film, multisensor probe was used to determine tissue oxygen tension, tissue temperature, and electrical activity at two depths below the brain surface in chloral hydrate- or nitrous oxide/halothane-anesthetized rats. Brain tissue temperature at both depths was found to be lower than core temperature by 1-2 degrees C. Electrical activation, spreading depression, and pentylenetetrazol seizures all resulted in transient increases of brain tissue temperature of a few tenths degree centigrade. Vasodilation, induced by hypercapnia or hypoxia, caused a warming of brain tissue. Near-maximum oxygen metabolism, reached upon reoxygenation after severe hypoxia, was accompanied by tissue temperature rises of greater than 1 degree C. It was concluded that brain tissue temperature in the anesthetized rat is lower than core temperature due to extensive radiative and conductive heat loss to the environment through the head. Transient increases in tissue temperature during activation are caused by vasodilation and increased metabolism.


Subject(s)
Anesthesia , Body Temperature/physiology , Brain/physiopathology , Animals , Brain/blood supply , Chloral Hydrate , Electric Stimulation , Electroencephalography , Halothane , Hypercapnia/physiopathology , Hypoxia/physiopathology , Nitrous Oxide , Pentylenetetrazole , Rats , Seizures/chemically induced , Seizures/physiopathology , Vasodilation
3.
Neuroscience ; 28(3): 539-49, 1989.
Article in English | MEDLINE | ID: mdl-2710329

ABSTRACT

A miniature multiple thin-film recording sensor was used to measure simultaneously the electrical activity, oxygen content and temperature of brain tissue. The chamber-type potential sensor was an Ag/AgCl electrode covered by an Si3N4 (silicon nitride) chamber. The chamber-type oxygen sensor consisted of an Au-Ag/AgCl two-electrode electrochemical cell embedded in an electrolyte-filled Si3N4 chamber. The temperature sensor was a thin-film germanium resistor. The different sensors were spaced 300 microns apart. Anaesthetics (pentobarbital, chloral hydrate, chlornembutal, halothane) were shown to depress electrical activity and to increase local oxygen tension in the hippocampus. Halothane, but not the other anaesthetics, also increased the current output of the oxygen sensor when tested in saline bath, indicating that the apparent increase in measured oxygen levels during halothane anaesthesia was partly due to an electrochemical effect of halothane on the oxygen sensors. The decrease of tissue oxygen consumption produced by the other anaesthetics is likely to be the result of metabolic depression. Cerebral ischemia, evoked by cauterization of the vertebral arteries and occlusion of the carotid arteries for 30 min, resulted in the disappearance of both spontaneous and evoked electrical activity in the hippocampus and a decrease of both local temperature and oxygen tension. There was a marked overshoot of the oxygen tension to above preocclusion level following the release of the carotid arteries. As soon as electrical activity returned, the oxygen tension fell again, often below the lowest level seen during the ischemic period. This secondary decrease of oxygen level could be reversed by administration of supplementary small doses of anaesthetic. The anaesthetic-induced increase in oxygen tension was accompanied by a marked decrease in electroencephalogram amplitude and frequency. During electrically induced seizures a decrease in hippocampal oxygen content occurred and was accompanied by an increase of local temperature. Since the rectal temperature was kept constant, the changes in temperature are likely to reflect changes in blood perfusion of the recorded area. These findings are in agreement with previous observations made with conventional electrodes. In addition, the miniature size of the chamber-type microelectrode assembly allows a correlated monitoring of parallel physiological changes with high spatial and temporal resolution during anaesthesia, ischemia and epilepsy.


Subject(s)
Anesthesia , Body Temperature Regulation , Brain Ischemia/physiopathology , Epilepsy/physiopathology , Hippocampus/physiology , Oxygen Consumption , Action Potentials/drug effects , Animals , Brain Ischemia/metabolism , Epilepsy/metabolism , Halothane , Hippocampus/metabolism , Hippocampus/physiopathology , Male , Partial Pressure , Rats , Rats, Inbred Strains
SELECTION OF CITATIONS
SEARCH DETAIL
...