Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 59(11): 5221-37, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27167172

ABSTRACT

Multiparameter optimization of a series of 5-((4-aminopyridin-2-yl)amino)pyrazine-2-carbonitriles resulted in the identification of a potent and selective oral CHK1 preclinical development candidate with in vivo efficacy as a potentiator of deoxyribonucleic acid (DNA) damaging chemotherapy and as a single agent. Cellular mechanism of action assays were used to give an integrated assessment of compound selectivity during optimization resulting in a highly CHK1 selective adenosine triphosphate (ATP) competitive inhibitor. A single substituent vector directed away from the CHK1 kinase active site was unexpectedly found to drive the selective cellular efficacy of the compounds. Both CHK1 potency and off-target human ether-a-go-go-related gene (hERG) ion channel inhibition were dependent on lipophilicity and basicity in this series. Optimization of CHK1 cellular potency and in vivo pharmacokinetic-pharmacodynamic (PK-PD) properties gave a compound with low predicted doses and exposures in humans which mitigated the residual weak in vitro hERG inhibition.


Subject(s)
4-Aminopyridine/analogs & derivatives , Checkpoint Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , 4-Aminopyridine/chemical synthesis , 4-Aminopyridine/chemistry , 4-Aminopyridine/pharmacology , Checkpoint Kinase 1/metabolism , Dose-Response Relationship, Drug , Humans , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazines/chemical synthesis , Pyrazines/chemistry , Structure-Activity Relationship
2.
J Med Chem ; 54(24): 8328-42, 2011 Dec 22.
Article in English | MEDLINE | ID: mdl-22111927

ABSTRACT

Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice.


Subject(s)
Antineoplastic Agents/chemical synthesis , Isoquinolines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Protein Kinases/metabolism , Pyrazines/chemical synthesis , Pyridines/chemical synthesis , Adenosine Triphosphate/chemistry , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Binding Sites , Biological Availability , Cell Line, Tumor , Checkpoint Kinase 1 , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Isoquinolines/chemistry , Isoquinolines/pharmacology , Mice , Mice, Nude , Molecular Conformation , Neoplasm Transplantation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous
3.
Org Biomol Chem ; 5(3): 531-46, 2007 Feb 07.
Article in English | MEDLINE | ID: mdl-17252137

ABSTRACT

A series of ansa-quinones has been prepared by chemical synthesis, and evaluated by biological techniques. Thus, 19-membered ansa-lactams, simplified analogues of the naturally occurring Hsp90 molecular chaperone inhibitor geldanamycin, were obtained by concise routes, the key steps being the combination of a ring-closing metathesis to give a 17-membered ring followed by Claisen rearrangement to effect ring expansion. The methodology was also used to prepare an "unnatural" 18-membered ring analogue. In ATPase enzyme assays, the synthetic ansa-quinones were weak inhibitors of Hsp90.


Subject(s)
Antibiotics, Antineoplastic/chemical synthesis , Benzoquinones/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactams, Macrocyclic/chemical synthesis , Molecular Chaperones/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Antibiotics, Antineoplastic/pharmacology , Benzoquinones/pharmacology , Cyclization , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacology , Models, Chemical , Molecular Conformation
4.
Chem Biol ; 13(11): 1203-15, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17114002

ABSTRACT

A series of benzo-macrolactones of varying ring size and conformation has been prepared by chemical synthesis and evaluated by structural and biological techniques. Thus, 12- to 16-membered lactones were obtained by concise routes, involving ring-closing metathesis as a key step. In enzyme assays, the 13-, 15-, and 16-membered analogs are good inhibitors, suggesting that they can adopt the required conformation to fit in the ATP-binding site. This was confirmed by cocrystallization of 13-, 14-, and 15-membered lactones with the N-terminal domain of yeast Hsp90, showing that they bind similarly to the "natural" 14-membered radicicol. The most active compounds in the ATPase assays also showed the greatest growth-inhibitory potency in HCT116 human colon cancer cells and the established molecular signature of Hsp90 inhibition, i.e., depletion of client proteins with upregulation of Hsp70.


Subject(s)
HSP90 Heat-Shock Proteins/antagonists & inhibitors , Lactones/chemical synthesis , Lactones/pharmacology , Macrolides/chemistry , Adenosine Triphosphatases/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Humans , Lactones/chemistry , Macrolides/pharmacology , Molecular Structure , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...