Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35566856

ABSTRACT

The detection of toxic insecticides is a major scientific and technological challenge. In this regard, imidacloprid is a neonicotinoid that is a systemic insecticide that can accumulate in agricultural products and affect human health. This work aims to study the properties of chitosan-TiO2 nanocomposites in which nanoparticles with high surface area serve as molecular recognition sites for electroanalytical imidacloprid detection. We show that the best sensitivity to imidacloprid was obtained using a modified electrode with a chitosan-TiO2 nanocomposite with a 40 wt.% of TiO2 nanoparticles. By using a three-phase effective permittivity model which includes chitosan, TiO2, an interface layer between nanoparticles and a matrix, we showed that nanocomposites with 40 wt.% of TiO2 the interface volume fraction reaches a maximum. At higher nanoparticle concentration, the sensitivity of the sensor decreases due to the decreasing of the interface volume fraction, agglomeration of nanoparticles and a decrease in their effective surface area. The methodology presented can be helpful in the design and optimization of polymer-based nanocomposites for a variety of applications.

2.
J Biomed Mater Res A ; 110(2): 266-272, 2022 02.
Article in English | MEDLINE | ID: mdl-34331513

ABSTRACT

Considerable attention has been given to the use of chitosan (CS)-based materials reinforced with inorganic bioactive signals such as hydroxyapatite (HA) to treat bone defects and tissue loss. It is well known that CS/HA based materials possess minimal foreign body reactions, good biocompatibility, controlled biodegradability and antibacterial property. Herein, the bioactivity of these composite systems was analyzed on in vitro bone cell models for their applications in the field of bone tissue engineering (BTE). The combination of sol-gel approach and freeze-drying technology was used to obtain CS/HA scaffolds with three-dimensional (3D) porous structure suitable for cell in-growth. Specifically, our aim was to investigate the influence of bioactive composite scaffolds on cellular behavior in terms of osteoinductivity and anti-inflammatory effects for treating bone defects. The results obtained have demonstrated that by increasing inorganic component concentration, CS/HA (60 and 70% v/v) scaffolds induced a good biological response in terms of osteogenic differentiation of human mesenchymal stem cells (hMSC) towards osteoblast phenotype. Furthermore, the scaffolds with higher concentration of inorganic fillers are able to modulate the production of pro-inflammatory (TGF-ß) and anti-inflammatory (IL-4, IL-10) cytokines. Our results highlight the possibility of achieving smart CS/HA based composites able to promote a great osteogenic differentiation of hMSC by increasing the amount of HA nanoparticles used as bioactive inorganic signal. Contemporarily, these materials allow avoiding the induction of a pro-inflammatory response in bone implant site.


Subject(s)
Chitosan , Nanocomposites , Biocompatible Materials/chemistry , Bone Regeneration , Chitosan/chemistry , Durapatite/chemistry , Durapatite/pharmacology , Nanocomposites/chemistry , Osteogenesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry
3.
Polymers (Basel) ; 12(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882974

ABSTRACT

The aim of this work is to structurally characterize chitosan-zinc oxide nanoparticles (CS-ZnO NPs) films in a wide range of NPs concentration (0-20 wt.%). Dielectric, conductivity, mechanical, and piezoelectric properties are assessed by using thermogravimetry, FTIR, XRD, mechanical, and dielectric spectroscopy measurements. These analyses reveal that the dielectric constant, Young's modulus, and piezoelectric constant (d33) exhibit a strong dependence on nanoparticle concentration such that maximum values of referred properties are obtained at 15 wt.% of ZnO NPs. The piezoelectric coefficient d33 in CS-ZnO nanocomposite films with 15 wt.% of NPs (d33 = 65.9 pC/N) is higher than most of polymer-ZnO nanocomposites because of the synergistic effect of piezoelectricity of NPs, elastic properties of CS, and optimum NPs concentration. A three-phase model is used to include the chitosan matrix, ZnO NPs, and interfacial layer with dielectric constant higher than that of neat chitosan and ZnO. This layer between nanoparticles and matrix is due to strong interactions between chitosan's side groups with ZnO NPs. The understanding of nanoscale properties of CS-ZnO nanocomposites is important in the development of biocompatible sensors, actuators, nanogenerators for flexible electronics and biomedical applications.

4.
Colloids Surf B Biointerfaces ; 196: 111296, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32771819

ABSTRACT

Herein we report the synthesis of a piezopolymer composed of chitosan (CS)/hydroxylated BaTiO3 (OH-BTO) nanoparticles with enhanced biocompatibility, non-toxicity, and piezoelectric behavior that can be advantageously used in biomedical applications. Our CS/OH-BTO nanocomposites exhibit piezoelectric coefficient (d33 = 11.29 pC/N) between those of dry skin (0.05-0.19 pC/N) and bone (4-11 pC/N), demonstrating biocompatibility in contact with human fibroblasts (HF) cells after 24 h. SEM, XRD, FTIR and Raman measurements were performed to assess the mechanism of interaction between CS matrix and OH-BTO NPs and their correlation with the biological responses. Cytotoxicity assays with HF cells reveal that hydroxylation of BTO NPs does not affect the cell viability of CS/OH-BTO films with NPs concentration from 1 to 30 wt.%. In contrast, non-hydroxylated BTO NPs showed significant cell damage, which could be traced to uncontrollable NPs agglomeration. This behavior suggests that CS/OH-BTO nanocomposites can act as active material that promotes cell growth and can be used for biomedical purposes.


Subject(s)
Chitosan , Anti-Bacterial Agents , Barium Compounds , Humans , Tissue Engineering , Titanium
5.
ACS Omega ; 2(5): 1896-1904, 2017 May 31.
Article in English | MEDLINE | ID: mdl-30023649

ABSTRACT

Development of biosensors with high sensitivity, high spatial resolution, and low cost has received significant attention for their applications in medical diagnosis, diabetes management, and environment-monitoring. However, achieving a direct electrical contact between redox enzymes and electrode surfaces and enhancing the operational stability still remain as challenges. Inorganic metal nanocrystals (NCs) with precisely controlled shape and surface structure engineered with an appropriate organic coating can help overcome the challenges associated with their stability and aggregation for practical biosensor applications. Herein, we describe a facile, room-temperature, seed-mediated solution-phase route to synthesize monodisperse Pd@Pt core-shell nanocubes with subnanometer-thick platinum (Pt) shells. The enzyme electrode consisting of Pd@Pt core-shell NCs was first covered with a chitosan (CS) polymer and then glucose oxidase (GOx) immobilized by a covalent linkage to the CS. This polymer permits covalent immobilization through active amino (-NH) side groups to improve the stability and preserve the biocatalytic functions while the Pd@Pt NCs facilitate enhanced direct electron transfer (DET) in the biosensor. The resultant biosensor promotes DET and exhibits excellent performance for the detection of glucose, with a sensitivity of 6.82 µA cm-2 mM-1 and a wide linear range of 1-6 mM. Our results demonstrate that sensitive electrochemical glucose detection based on Pd@Pt core-shell NCs provides remarkable opportunities for designing low-cost and sensitive biosensors.

6.
Soft Matter ; 10(43): 8673-84, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25254949

ABSTRACT

Molecular relaxations of chitosan films have been investigated in the wide frequency range of 0.1 to 3 × 10(9) Hz from -10 °C to 110 °C using dielectric spectroscopy. For the first time, two high-frequency relaxation processes (in the range 10(8) to 3 × 10(9) Hz) are reported in addition to the low frequency relaxations α and ß. These two relaxation processes are related to the vibrations of OH and NH2/NH3(+), respectively. The high-frequency relaxations exhibit Arrhenius-type dependencies in the temperature range 10 °C to 54 °C with negative activation energy; this observation is traceable to hydrogen bonding reorientation. At temperatures above the glass transition temperature (54 °C), the activation energy changes from negative to positive values due to breaking of hydrogen bonding and water loss. Upon cooling in a sealed environment, the activation energies of two relaxation processes are nearly zero. FTIR and XRD analyses reveal associated structural changes upon heating and cooling. These two new high-frequency relaxation processes can be attributed to the interaction of bound water with OH and NH2/NH3(+), respectively. A plausible scenario for these high-frequency relaxations is discussed in light of impedance spectroscopy, TGA, FTIR and XRD measurements.


Subject(s)
Chitosan/chemistry , Membranes, Artificial , Microwaves , Dielectric Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...