Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 306
Filter
1.
Eur Radiol Exp ; 8(1): 63, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38764066

ABSTRACT

BACKGROUND: Emphysema influences the appearance of lung tissue in computed tomography (CT). We evaluated whether this affects lung nodule detection by artificial intelligence (AI) and human readers (HR). METHODS: Individuals were selected from the "Lifelines" cohort who had undergone low-dose chest CT. Nodules in individuals without emphysema were matched to similar-sized nodules in individuals with at least moderate emphysema. AI results for nodular findings of 30-100 mm3 and 101-300 mm3 were compared to those of HR; two expert radiologists blindly reviewed discrepancies. Sensitivity and false positives (FPs)/scan were compared for emphysema and non-emphysema groups. RESULTS: Thirty-nine participants with and 82 without emphysema were included (n = 121, aged 61 ± 8 years (mean ± standard deviation), 58/121 males (47.9%)). AI and HR detected 196 and 206 nodular findings, respectively, yielding 109 concordant nodules and 184 discrepancies, including 118 true nodules. For AI, sensitivity was 0.68 (95% confidence interval 0.57-0.77) in emphysema versus 0.71 (0.62-0.78) in non-emphysema, with FPs/scan 0.51 and 0.22, respectively (p = 0.028). For HR, sensitivity was 0.76 (0.65-0.84) and 0.80 (0.72-0.86), with FPs/scan of 0.15 and 0.27 (p = 0.230). Overall sensitivity was slightly higher for HR than for AI, but this difference disappeared after the exclusion of benign lymph nodes. FPs/scan were higher for AI in emphysema than in non-emphysema (p = 0.028), while FPs/scan for HR were higher than AI for 30-100 mm3 nodules in non-emphysema (p = 0.009). CONCLUSIONS: AI resulted in more FPs/scan in emphysema compared to non-emphysema, a difference not observed for HR. RELEVANCE STATEMENT: In the creation of a benchmark dataset to validate AI software for lung nodule detection, the inclusion of emphysema cases is important due to the additional number of FPs. KEY POINTS: • The sensitivity of nodule detection by AI was similar in emphysema and non-emphysema. • AI had more FPs/scan in emphysema compared to non-emphysema. • Sensitivity and FPs/scan by the human reader were comparable for emphysema and non-emphysema. • Emphysema and non-emphysema representation in benchmark dataset is important for validating AI.


Subject(s)
Artificial Intelligence , Pulmonary Emphysema , Tomography, X-Ray Computed , Humans , Male , Middle Aged , Female , Tomography, X-Ray Computed/methods , Pulmonary Emphysema/diagnostic imaging , Software , Sensitivity and Specificity , Lung Neoplasms/diagnostic imaging , Aged , Radiation Dosage , Solitary Pulmonary Nodule/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods
3.
Eur Radiol ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758252

ABSTRACT

INTRODUCTION: This study investigates the performance of a commercially available artificial intelligence (AI) system to identify normal chest radiographs and its potential to reduce radiologist workload. METHODS: Retrospective analysis included consecutive chest radiographs from two medical centers between Oct 1, 2016 and Oct 14, 2016. Exclusions comprised follow-up exams within the inclusion period, bedside radiographs, incomplete images, imported radiographs, and pediatric radiographs. Three chest radiologists categorized findings into normal, clinically irrelevant, clinically relevant, urgent, and critical. A commercial AI system processed all radiographs, scoring 10 chest abnormalities on a 0-100 confidence scale. AI system performance was evaluated using the area under the ROC curve (AUC), assessing the detection of normal radiographs. Sensitivity was calculated for the default and a conservative operating point. the detection of negative predictive value (NPV) for urgent and critical findings, as well as the potential workload reduction, was calculated. RESULTS: A total of 2603 radiographs were acquired in 2141 unique patients. Post-exclusion, 1670 radiographs were analyzed. Categories included 479 normal, 332 clinically irrelevant, 339 clinically relevant, 501 urgent, and 19 critical findings. The AI system achieved an AUC of 0.92. Sensitivity for normal radiographs was 92% at default and 53% at the conservative operating point. At the conservative operating point, NPV was 98% for urgent and critical findings, and could result in a 15% workload reduction. CONCLUSION: A commercially available AI system effectively identifies normal chest radiographs and holds the potential to lessen radiologists' workload by omitting half of the normal exams from reporting. CLINICAL RELEVANCE STATEMENT: The AI system is able to detect half of all normal chest radiographs at a clinically acceptable operating point, thereby potentially reducing the workload for the radiologists by 15%. KEY POINTS: The AI system reached an AUC of 0.92 for the detection of normal chest radiographs. Fifty-three percent of normal chest radiographs were identified with a NPV of 98% for urgent findings. AI can reduce the workload of chest radiography reporting by 15%.

4.
Eur Radiol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38536463

ABSTRACT

OBJECTIVE: To investigate the effect of uncertainty estimation on the performance of a Deep Learning (DL) algorithm for estimating malignancy risk of pulmonary nodules. METHODS AND MATERIALS: In this retrospective study, we integrated an uncertainty estimation method into a previously developed DL algorithm for nodule malignancy risk estimation. Uncertainty thresholds were developed using CT data from the Danish Lung Cancer Screening Trial (DLCST), containing 883 nodules (65 malignant) collected between 2004 and 2010. We used thresholds on the 90th and 95th percentiles of the uncertainty score distribution to categorize nodules into certain and uncertain groups. External validation was performed on clinical CT data from a tertiary academic center containing 374 nodules (207 malignant) collected between 2004 and 2012. DL performance was measured using area under the ROC curve (AUC) for the full set of nodules, for the certain cases and for the uncertain cases. Additionally, nodule characteristics were compared to identify trends for inducing uncertainty. RESULTS: The DL algorithm performed significantly worse in the uncertain group compared to the certain group of DLCST (AUC 0.62 (95% CI: 0.49, 0.76) vs 0.93 (95% CI: 0.88, 0.97); p < .001) and the clinical dataset (AUC 0.62 (95% CI: 0.50, 0.73) vs 0.90 (95% CI: 0.86, 0.94); p < .001). The uncertain group included larger benign nodules as well as more part-solid and non-solid nodules than the certain group. CONCLUSION: The integrated uncertainty estimation showed excellent performance for identifying uncertain cases in which the DL-based nodule malignancy risk estimation algorithm had significantly worse performance. CLINICAL RELEVANCE STATEMENT: Deep Learning algorithms often lack the ability to gauge and communicate uncertainty. For safe clinical implementation, uncertainty estimation is of pivotal importance to identify cases where the deep learning algorithm harbors doubt in its prediction. KEY POINTS: • Deep learning (DL) algorithms often lack uncertainty estimation, which potentially reduce the risk of errors and improve safety during clinical adoption of the DL algorithm. • Uncertainty estimation identifies pulmonary nodules in which the discriminative performance of the DL algorithm is significantly worse. • Uncertainty estimation can further enhance the benefits of the DL algorithm and improve its safety and trustworthiness.

5.
Insights Imaging ; 15(1): 62, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411847

ABSTRACT

Gadolinium-based contrast agents (GBCA) are essential for diagnostic MRI examinations. GBCA are only used in small quantities on a per-patient basis; however, the acquisition of contrast-enhanced MRI examinations worldwide results in the use of many thousands of litres of GBCA per year. Data shows that these GBCA are present in sewage water, surface water, and drinking water in many regions of the world. Therefore, there is growing concern regarding the environmental impact of GBCA because of their ubiquitous presence in the aquatic environment. To address the problem of GBCA in the water system as a whole, collaboration is necessary between all stakeholders, including the producers of GBCA, medical professionals and importantly, the consumers of drinking water, i.e. the patients. This paper aims to make healthcare professionals aware of the opportunity to take the lead in making informed decisions about the use of GBCA and provides an overview of the different options for action.In this paper, we first provide a summary on the metabolism and clinical use of GBCA, then the environmental fate and observations of GBCA, followed by measures to reduce the use of GBCA. The environmental impact of GBCA can be reduced by (1) measures focusing on the application of GBCA by means of weight-based contrast volume reduction, GBCA with higher relaxivity per mmol of Gd, contrast-enhancing sequences, and post-processing; and (2) measures that reduce the waste of GBCA, including the use of bulk packaging and collecting residues of GBCA at the point of application.Critical relevance statement This review aims to make healthcare professionals aware of the environmental impact of GBCA and the opportunity for them to take the lead in making informed decisions about GBCA use and the different options to reduce its environmental burden.Key points• Gadolinium-based contrast agents are found in sources of drinking water and constitute an environmental risk.• Radiologists have a wide spectrum of options to reduce GBCA use without compromising diagnostic quality.• Radiology can become more sustainable by adopting such measures in clinical practice.

6.
Cancers (Basel) ; 16(2)2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38254891

ABSTRACT

BACKGROUND: AI-driven clinical decision support systems (CDSSs) hold promise for multidisciplinary team meetings (MDTMs). This study aimed to uncover the hurdles and aids in implementing CDSSs during breast cancer MDTMs. METHODS: Twenty-four core team members from three hospitals engaged in semi-structured interviews, revealing a collective interest in experiencing CDSS workflows in clinical practice. All interviews were audio recorded, transcribed verbatim and analyzed anonymously. A standardized approach, 'the framework method', was used to create an analytical framework for data analysis, which was performed by two independent researchers. RESULTS: Positive aspects included improved data visualization, time-saving features, automated trial matching, and enhanced documentation transparency. However, challenges emerged, primarily concerning data connectivity, guideline updates, the accuracy of AI-driven suggestions, and the risk of losing human involvement in decision making. Despite the complexities involved in CDSS development and integration, clinicians demonstrated enthusiasm to explore its potential benefits. CONCLUSIONS: Acknowledging the multifaceted nature of this challenge, insights into the barriers and facilitators identified in this study offer a potential roadmap for smoother future implementations. Understanding these factors could pave the way for more effective utilization of CDSSs in breast cancer MDTMs, enhancing patient care through informed decision making.

7.
Invest Radiol ; 59(7): 538-544, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38193779

ABSTRACT

OBJECTIVES: This project aims to model an optimal scanning environment for breast magnetic resonance imaging (MRI) screening based on real-life data to identify to what extent the logistics of breast MRI can be optimized. MATERIALS AND METHODS: A novel concept for a breast MRI screening facility was developed considering layout of the building, workflow steps, used resources, and MRI protocols. The envisioned screening facility is person centered and aims for an efficient workflow-oriented design. Real-life data, collected from existing breast MRI screening workflows, during 62 scans in 3 different hospitals, were imported into a 3D simulation software for designing and testing new concepts. The model provided several realistic, virtual, logistical pathways for MRI screening and their outcome measures: throughput, waiting times, and other relevant variables. RESULTS: The total average appointment time in the baseline scenario was 25:54 minutes, with 19:06 minutes of MRI room occupation. Simulated improvements consisted of optimizing processes and resources, facility layout, and scanning protocol. In the simulation, time spent in the MRI room was reduced by introducing an optimized facility layout, dockable tables, and adoption of an abbreviated MRI scanning protocol. The total average appointment time was reduced to 19:36 minutes, and in this scenario, the MRI room was occupied for 06:21 minutes. In the most promising scenario, screening of about 68 people per day (10 hours) on a single MRI scanner could be feasible, compared with 36 people per day in the baseline scenario. CONCLUSIONS: This study suggests that by optimizing workflow MRI for breast screening total appointment duration and MRI occupation can be reduced. A throughput of up to 6 people per hour may be achieved, compared with 3 people per hour in the current setup.


Subject(s)
Breast Neoplasms , Computer Simulation , Magnetic Resonance Imaging , Workflow , Humans , Magnetic Resonance Imaging/methods , Female , Breast Neoplasms/diagnostic imaging , Patient-Centered Care
9.
Comput Biol Med ; 169: 107871, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154157

ABSTRACT

BACKGROUND: During lung cancer screening, indeterminate pulmonary nodules (IPNs) are a frequent finding. We aim to predict whether IPNs are resolving or non-resolving to reduce follow-up examinations, using machine learning (ML) models. We incorporated dedicated techniques to enhance prediction explainability. METHODS: In total, 724 IPNs (size 50-500 mm3, 575 participants) from the Dutch-Belgian Randomized Lung Cancer Screening Trial were used. We implemented six ML models and 14 factors to predict nodule disappearance. Random search was applied to determine the optimal hyperparameters on the training set (579 nodules). ML models were trained using 5-fold cross-validation and tested on the test set (145 nodules). Model predictions were evaluated by utilizing the recall, precision, F1 score, and the area under the receiver operating characteristic curve (AUC). The best-performing model was used for three feature importance techniques: mean decrease in impurity (MDI), permutation feature importance (PFI), and SHAPley Additive exPlanations (SHAP). RESULTS: The random forest model outperformed the other ML models with an AUC of 0.865. This model achieved a recall of 0.646, a precision of 0.816, and an F1 score of 0.721. The evaluation of feature importance achieved consistent ranking across all three methods for the most crucial factors. The MDI, PFI, and SHAP methods highlighted volume, maximum diameter, and minimum diameter as the top three factors. However, the remaining factors revealed discrepant ranking across methods. CONCLUSION: ML models effectively predict IPN disappearance using participant demographics and nodule characteristics. Explainable techniques can assist clinicians in developing understandable preliminary assessments.


Subject(s)
Lung Neoplasms , Humans , Early Detection of Cancer , Machine Learning , ROC Curve , Randomized Controlled Trials as Topic
10.
PLoS One ; 18(12): e0293353, 2023.
Article in English | MEDLINE | ID: mdl-38134125

ABSTRACT

BACKGROUND: Reliably capturing sub-millimeter vessel wall motion over time, using dynamic Computed Tomography Angiography (4D CTA), might provide insight in biomechanical properties of these vessels. This may improve diagnosis, prognosis, and treatment decision making in vascular pathologies. PURPOSE: The aim of this study is to determine the most suitable image reconstruction method for 4D CTA to accurately assess harmonic diameter changes of vessels. METHODS: An elastic tube (inner diameter 6 mm, wall thickness 2 mm) was exposed to sinusoidal pressure waves with a frequency of 70 beats-per-minute. Five flow amplitudes were set, resulting in increasing sinusoidal diameter changes of the elastic tube, measured during three simulated pulsation cycles, using ECG-gated 4D CTA on a 320-detector row CT system. Tomographic images were reconstructed using one of the following three reconstruction methods: hybrid iterative (Hybrid-IR), model-based iterative (MBIR) and deep-learning based (DLR) reconstruction. The three reconstruction methods where based on 180 degrees (half reconstruction mode) and 360 degrees (full reconstruction mode) raw data. The diameter change, captured by 4D CTA, was computed based on image registration. As a reference metric for diameter change measurement, a 9 MHz linear ultrasound transducer was used. The sum of relative absolute differences (SRAD) between the ultrasound and 4D CTA measurements was calculated for each reconstruction method. The standard deviation was computed across the three pulsation cycles. RESULTS: MBIR and DLR resulted in a decreased SRAD and standard deviation compared to Hybrid-IR. Full reconstruction mode resulted in a decreased SRAD and standard deviations, compared to half reconstruction mode. CONCLUSIONS: 4D CTA can capture a diameter change pattern comparable to the pattern captured by US. DLR and MBIR algorithms show more accurate results than Hybrid-IR. Reconstruction with DLR is >3 times faster, compared to reconstruction with MBIR. Full reconstruction mode is more accurate than half reconstruction mode.


Subject(s)
Computed Tomography Angiography , Radiographic Image Interpretation, Computer-Assisted , Computed Tomography Angiography/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Angiography/methods , Algorithms , Image Processing, Computer-Assisted , Radiation Dosage
11.
Insights Imaging ; 14(1): 208, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38010436

ABSTRACT

OBJECTIVE: An increasing number of commercial deep learning computer-aided detection (DL-CAD) systems are available but their cost-saving potential is largely unknown. This study aimed to gain insight into appropriate pricing for DL-CAD in different reading modes to be cost-saving and to determine the potentially most cost-effective reading mode for lung cancer screening. METHODS: In three representative settings, DL-CAD was evaluated as a concurrent, pre-screening, and second reader. Scoping review was performed to estimate radiologist reading time with and without DL-CAD. Hourly cost of radiologist time was collected for the USA (€196), UK (€127), and Poland (€45), and monetary equivalence of saved time was calculated. The minimum number of screening CTs to reach break-even was calculated for one-time investment of €51,616 for DL-CAD. RESULTS: Mean reading time was 162 (95% CI: 111-212) seconds per case without DL-CAD, which decreased by 77 (95% CI: 47-107) and 104 (95% CI: 71-136) seconds for DL-CAD as concurrent and pre-screening reader, respectively, and increased by 33-41 s for DL-CAD as second reader. This translates into €1.0-4.3 per-case cost for concurrent reading and €0.8-5.7 for pre-screening reading in the USA, UK, and Poland. To achieve break-even with a one-time investment, the minimum number of CT scans was 12,300-53,600 for concurrent reader, and 9400-65,000 for pre-screening reader in the three countries. CONCLUSIONS: Given current pricing, DL-CAD must be priced substantially below €6 in a pay-per-case setting or used in a high-workload environment to reach break-even in lung cancer screening. DL-CAD as pre-screening reader shows the largest potential to be cost-saving. CRITICAL RELEVANCE STATEMENT: Deep-learning computer-aided lung nodule detection (DL-CAD) software must be priced substantially below 6 euro in a pay-per-case setting or must be used in high-workload environments with one-time investment in order to achieve break-even. DL-CAD as a pre-screening reader has the greatest cost savings potential. KEY POINTS: • DL-CAD must be substantially below €6 in a pay-per-case setting to reach break-even. • DL-CAD must be used in a high-workload screening environment to achieve break-even. • DL-CAD as a pre-screening reader shows the largest potential to be cost-saving.

12.
Transl Lung Cancer Res ; 12(10): 2015-2029, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38025812

ABSTRACT

Background: Varied outcomes on the relation between time-to-treatment and survival in early-stage non-small cell lung cancer (NSCLC) patients are reported. We examined this relation in a large multicentric retrospective cohort study and identified factors associated with extended time-to-treatment. Methods: We included 9,536 patients with clinical stage I-II NSCLC, diagnosed and treated in 2014-2019, from the Netherlands Cancer Registry that includes nation-wide data. Time-to-treatment was defined as the number of days between first outpatient visit for suspected lung cancer and start of treatment. The effect of extended time-to-treatment beyond the first quartile and survival was studied with Cox proportional hazard regression. Analyses were stratified for stage and type of therapy. Time-to-treatment was adjusted for multiple covariates including performance status and socioeconomic status. Factors associated with treatment delay were identified by multilevel logistic regression. Results: Median time-to-treatment was 47 days [interquartile range (IQR): 34-65] for stage I and 46 days (IQR: 34-62) for stage II. The first quartile extended to 33 days for both stages. Risk of death increased significantly with extended time-to-treatment for surgical treatment of clinical stage II patients [adjusted hazard ratio (aHR) >33 days: 1.36, 95% confidence intervals (CI): 1.09-1.70], but not in stage II patients treated with radiotherapy or in stage I patients. Causes of prolonged time-to-treatment were multifactorial including diagnostic tests, such as endoscopic ultrasound (EUS) or endobronchial ultrasound (EBUS). Conclusions: Clinical stage II patients benefit from fast initiation of surgical treatment. Surprisingly this appears to be accounted for by patients who are clinically stage II but pathologically stage I. Further study is needed on characterizing these patients and the significance of lymph node- or distant micrometastasis in guiding time-to-treatment and treatment strategy.

13.
Commun Med (Lond) ; 3(1): 156, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891360

ABSTRACT

BACKGROUND: Outside a screening program, early-stage lung cancer is generally diagnosed after the detection of incidental nodules in clinically ordered chest CT scans. Despite the advances in artificial intelligence (AI) systems for lung cancer detection, clinical validation of these systems is lacking in a non-screening setting. METHOD: We developed a deep learning-based AI system and assessed its performance for the detection of actionable benign nodules (requiring follow-up), small lung cancers, and pulmonary metastases in CT scans acquired in two Dutch hospitals (internal and external validation). A panel of five thoracic radiologists labeled all nodules, and two additional radiologists verified the nodule malignancy status and searched for any missed cancers using data from the national Netherlands Cancer Registry. The detection performance was evaluated by measuring the sensitivity at predefined false positive rates on a free receiver operating characteristic curve and was compared with the panel of radiologists. RESULTS: On the external test set (100 scans from 100 patients), the sensitivity of the AI system for detecting benign nodules, primary lung cancers, and metastases is respectively 94.3% (82/87, 95% CI: 88.1-98.8%), 96.9% (31/32, 95% CI: 91.7-100%), and 92.0% (104/113, 95% CI: 88.5-95.5%) at a clinically acceptable operating point of 1 false positive per scan (FP/s). These sensitivities are comparable to or higher than the radiologists, albeit with a slightly higher FP/s (average difference of 0.6). CONCLUSIONS: The AI system reliably detects benign and malignant pulmonary nodules in clinically indicated CT scans and can potentially assist radiologists in this setting.


Early-stage lung cancer can be diagnosed after identifying an abnormal spot on a chest CT scan ordered for other medical reasons. These spots or lung nodules can be overlooked by radiologists, as they are not necessarily the focus of an examination and can be as small as a few millimeters. Software using Artificial Intelligence (AI) technology has proven to be successful for aiding radiologists in this task, but its performance is understudied outside a lung cancer screening setting. We therefore developed and validated AI software for the detection of cancerous nodules or non-cancerous nodules that would need attention. We show that the software can reliably detect these nodules in a non-screening setting and could potentially aid radiologists in daily clinical practice.

14.
Diagnostics (Basel) ; 13(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37892019

ABSTRACT

The preoperative prediction of resectability pancreatic ductal adenocarcinoma (PDAC) is challenging. This retrospective single-center study examined tumor and vessel radiomics to predict the resectability of PDAC in chemo-naïve patients. The tumor and adjacent arteries and veins were segmented in the portal-venous phase of contrast-enhanced CT scans, and radiomic features were extracted. Features were selected via stability and collinearity testing, and least absolute shrinkage and selection operator application (LASSO). Three models, using tumor features, vessel features, and a combination of both, were trained with the training set (N = 86) to predict resectability. The results were validated with the test set (N = 15) and compared to the multidisciplinary team's (MDT) performance. The vessel-features-only model performed best, with an AUC of 0.92 and sensitivity and specificity of 97% and 73%, respectively. Test set validation showed a sensitivity and specificity of 100% and 88%, respectively. The combined model was as good as the vessel model (AUC = 0.91), whereas the tumor model showed poor performance (AUC = 0.76). The MDT's prediction reached a sensitivity and specificity of 97% and 84% for the training set and 88% and 100% for the test set, respectively. Our clinician-independent vessel-based radiomics model can aid in predicting resectability and shows performance comparable to that of the MDT. With these encouraging results, improved, automated, and generalizable models can be developed that reduce workload and can be applied in non-expert hospitals.

15.
Eur Respir J ; 62(4)2023 10.
Article in English | MEDLINE | ID: mdl-37802631

ABSTRACT

BACKGROUND: Screening for lung cancer with low radiation dose computed tomography has a strong evidence base, is being introduced in several European countries and is recommended as a new targeted cancer screening programme. The imperative now is to ensure that implementation follows an evidence-based process that will ensure clinical and cost effectiveness. This European Respiratory Society (ERS) task force was formed to provide an expert consensus for the management of incidental findings which can be adapted and followed during implementation. METHODS: A multi-European society collaborative group was convened. 23 topics were identified, primarily from an ERS statement on lung cancer screening, and a systematic review of the literature was conducted according to ERS standards. Initial review of abstracts was completed and full text was provided to members of the group for each topic. Sections were edited and the final document approved by all members and the ERS Science Council. RESULTS: Nine topics considered most important and frequent were reviewed as standalone topics (interstitial lung abnormalities, emphysema, bronchiectasis, consolidation, coronary calcification, aortic valve disease, mediastinal mass, mediastinal lymph nodes and thyroid abnormalities). Other topics considered of lower importance or infrequent were grouped into generic categories, suitable for general statements. CONCLUSIONS: This European collaborative group has produced an incidental findings statement that can be followed during lung cancer screening. It will ensure that an evidence-based approach is used for reporting and managing incidental findings, which will mean that harms are minimised and any programme is as cost-effective as possible.


Subject(s)
Lung Neoplasms , Practice Guidelines as Topic , Humans , Early Detection of Cancer/methods , Expressed Sequence Tags , Incidental Findings , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods
16.
Eur J Cardiothorac Surg ; 64(4)2023 10 04.
Article in English | MEDLINE | ID: mdl-37804174

ABSTRACT

BACKGROUND: Screening for lung cancer with low radiation dose computed tomography has a strong evidence base, is being introduced in several European countries and is recommended as a new targeted cancer screening programme. The imperative now is to ensure that implementation follows an evidence-based process that will ensure clinical and cost effectiveness. This European Respiratory Society (ERS) task force was formed to provide an expert consensus for the management of incidental findings which can be adapted and followed during implementation. METHODS: A multi-European society collaborative group was convened. 23 topics were identified, primarily from an ERS statement on lung cancer screening, and a systematic review of the literature was conducted according to ERS standards. Initial review of abstracts was completed and full text was provided to members of the group for each topic. Sections were edited and the final document approved by all members and the ERS Science Council. RESULTS: Nine topics considered most important and frequent were reviewed as standalone topics (interstitial lung abnormalities, emphysema, bronchiectasis, consolidation, coronary calcification, aortic valve disease, mediastinal mass, mediastinal lymph nodes and thyroid abnormalities). Other topics considered of lower importance or infrequent were grouped into generic categories, suitable for general statements. CONCLUSIONS: This European collaborative group has produced an incidental findings statement that can be followed during lung cancer screening. It will ensure that an evidence-based approach is used for reporting and managing incidental findings, which will mean that harms are minimised and any programme is as cost-effective as possible.


Subject(s)
Lung Neoplasms , Humans , Lung Neoplasms/diagnostic imaging , Early Detection of Cancer/methods , Expressed Sequence Tags , Incidental Findings , Tomography, X-Ray Computed/methods
17.
Radiology ; 308(2): e223308, 2023 08.
Article in English | MEDLINE | ID: mdl-37526548

ABSTRACT

Background Prior chest CT provides valuable temporal information (eg, changes in nodule size or appearance) to accurately estimate malignancy risk. Purpose To develop a deep learning (DL) algorithm that uses a current and prior low-dose CT examination to estimate 3-year malignancy risk of pulmonary nodules. Materials and Methods In this retrospective study, the algorithm was trained using National Lung Screening Trial data (collected from 2002 to 2004), wherein patients were imaged at most 2 years apart, and evaluated with two external test sets from the Danish Lung Cancer Screening Trial (DLCST) and the Multicentric Italian Lung Detection Trial (MILD), collected in 2004-2010 and 2005-2014, respectively. Performance was evaluated using area under the receiver operating characteristic curve (AUC) on cancer-enriched subsets with size-matched benign nodules imaged 1 and 2 years apart from DLCST and MILD, respectively. The algorithm was compared with a validated DL algorithm that only processed a single CT examination and the Pan-Canadian Early Lung Cancer Detection Study (PanCan) model. Results The training set included 10 508 nodules (422 malignant) in 4902 trial participants (mean age, 64 years ± 5 [SD]; 2778 men). The size-matched external test sets included 129 nodules (43 malignant) and 126 nodules (42 malignant). The algorithm achieved AUCs of 0.91 (95% CI: 0.85, 0.97) and 0.94 (95% CI: 0.89, 0.98). It significantly outperformed the DL algorithm that only processed a single CT examination (AUC, 0.85 [95% CI: 0.78, 0.92; P = .002]; and AUC, 0.89 [95% CI: 0.84, 0.95; P = .01]) and the PanCan model (AUC, 0.64 [95% CI: 0.53, 0.74; P < .001]; and AUC, 0.63 [95% CI: 0.52, 0.74; P < .001]). Conclusion A DL algorithm using current and prior low-dose CT examinations was more effective at estimating 3-year malignancy risk of pulmonary nodules than established models that only use a single CT examination. Clinical trial registration nos. NCT00047385, NCT00496977, NCT02837809 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Horst and Nishino in this issue.


Subject(s)
Deep Learning , Lung Neoplasms , Multiple Pulmonary Nodules , Male , Humans , Middle Aged , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Retrospective Studies , Early Detection of Cancer , Canada , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/pathology , Tomography, X-Ray Computed/methods
18.
Sci Rep ; 13(1): 11507, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37460572

ABSTRACT

In coronavirus disease 2019 (COVID-19), endothelial cells play a central role and an inadequate response is associated with vascular complications. PET imaging with gallium-68 labelled RGD-peptide (68Ga-RGD) targets αvß3 integrin expression which allows quantification of endothelial activation. In this single-center, prospective observational study, we included ten hospitalized patients with COVID-19 between October 2020 and January 2021. Patients underwent 68Ga-RGD PET/CT followed by iodine mapping of lung parenchyma. CT-based segmentation of lung parenchyma, carotid arteries and myocardium was used to quantify tracer uptake by calculating standardized uptake values (SUV). Five non-COVID-19 patients were used as reference. The study population was 68.5 (IQR 52.0-74.5) years old, with median oxygen need of 3 l/min (IQR 0.9-4.0). 68Ga-RGD uptake quantified as SUV ± SD was increased in lungs (0.99 ± 0.32 vs. 0.45 ± 0.18, p < 0.01) and myocardium (3.44 ± 1.59 vs. 0.65 ± 0.22, p < 0.01) of COVID-19 patients compared to reference but not in the carotid arteries. Iodine maps showed local variations in parenchymal perfusion but no correlation with SUV. In conclusion, using 68Ga-RGD PET/CT in COVID-19 patients admitted with respiratory symptoms, we demonstrated increased endothelial activation in the lung parenchyma and myocardium. Our findings indicate the involvement of increased and localized endothelial cell activation in the cardiopulmonary system in COVID-19 patients.Trail registration: NCT04596943.


Subject(s)
COVID-19 , Positron Emission Tomography Computed Tomography , Humans , Middle Aged , Aged , Gallium Radioisotopes , Endothelial Cells/metabolism , COVID-19/diagnostic imaging , Positron-Emission Tomography , Oligopeptides , Integrin alphaVbeta3/metabolism
20.
Eur Radiol ; 33(11): 8279-8288, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37338552

ABSTRACT

OBJECTIVE: To study trends in the incidence of reported pulmonary nodules and stage I lung cancer in chest CT. METHODS: We analyzed the trends in the incidence of detected pulmonary nodules and stage I lung cancer in chest CT scans in the period between 2008 and 2019. Imaging metadata and radiology reports from all chest CT studies were collected from two large Dutch hospitals. A natural language processing algorithm was developed to identify studies with any reported pulmonary nodule. RESULTS: Between 2008 and 2019, a total of 74,803 patients underwent 166,688 chest CT examinations at both hospitals combined. During this period, the annual number of chest CT scans increased from 9955 scans in 6845 patients in 2008 to 20,476 scans in 13,286 patients in 2019. The proportion of patients in whom nodules (old or new) were reported increased from 38% (2595/6845) in 2008 to 50% (6654/13,286) in 2019. The proportion of patients in whom significant new nodules (≥ 5 mm) were reported increased from 9% (608/6954) in 2010 to 17% (1660/9883) in 2017. The number of patients with new nodules and corresponding stage I lung cancer diagnosis tripled and their proportion doubled, from 0.4% (26/6954) in 2010 to 0.8% (78/9883) in 2017. CONCLUSION: The identification of incidental pulmonary nodules in chest CT has steadily increased over the past decade and has been accompanied by more stage I lung cancer diagnoses. CLINICAL RELEVANCE STATEMENT: These findings stress the importance of identifying and efficiently managing incidental pulmonary nodules in routine clinical practice. KEY POINTS: • The number of patients who underwent chest CT examinations substantially increased over the past decade, as did the number of patients in whom pulmonary nodules were identified. • The increased use of chest CT and more frequently identified pulmonary nodules were associated with more stage I lung cancer diagnoses.


Subject(s)
Lung Neoplasms , Multiple Pulmonary Nodules , Solitary Pulmonary Nodule , Humans , Incidence , Solitary Pulmonary Nodule/diagnostic imaging , Solitary Pulmonary Nodule/epidemiology , Multiple Pulmonary Nodules/diagnostic imaging , Multiple Pulmonary Nodules/epidemiology , Tomography, X-Ray Computed/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...