Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 86(12): 5964-72, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11739471

ABSTRACT

The Wilms' tumor suppressor gene (WT1) encodes a zinc-finger containing transcription factor that is selectively expressed in the developing urogenital tract and functions as a tissue-specific developmental regulator. In addition to its gene-regulatory function through DNA binding properties, WT-1 also regulates transcription by formation of protein-protein complexes. These properties place WT-1 as a major regulator of cell growth and differentiation. In view of these observations, we studied WT1 mRNA and protein in human endometrial extracts and in endometrial stromal cells (ESCs) differentiating into decidual cells in vitro, by RT-PCR and Western blotting, respectively. WT1 protein expression was also studied in situ in the proliferative and the secretory phase of the menstrual cycle in the early pregnant state. Analysis by PCR of total RNA prepared from human ESCs demonstrated the presence of WT1 mRNA and four WT1 mRNA splice variants. Western blot analysis of nuclear protein extracts from ESCs yielded one immunoreactive protein of the expected size (approximately 52-54 kDa) recognized by the WT1 antibody. Immunohistochemical staining showed that WT1 protein is localized only to nuclei of human endometrial stromal cells. It remains constant in the proliferative and the secretory phase of the menstrual cycle and is increased remarkably during decidualization in early pregnancy. ESCs decidualized in vitro were investigated for WT-1 expression, which confirmed that decidualizing stimuli (E2, medroxy-progesterone-acetate, and relaxin for 12 d or cAMP and progesterone for 1-4 d) induced WT-1 mRNA (P < 0.05) and increased protein levels (P < 0.05). These data indicate that in humans the WT1 gene is expressed in ESCs and its mRNA and protein levels remain constant in the proliferative and the secretory phase of the menstrual cycle and that WT1 mRNA and protein expression increases significantly in ESCs when these cells differentiate into decidual cells.


Subject(s)
Endometrium/physiology , Gene Expression , Genes, Wilms Tumor , Cells, Cultured , Decidua/physiology , Endometrium/cytology , Female , Gene Expression Regulation , Humans , Menstrual Cycle/physiology , Pregnancy , RNA, Messenger/metabolism , Stromal Cells/metabolism , WT1 Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...