Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916110

ABSTRACT

The coordination chemistry of an amine-rich CpN3 ligand has been explored with cobalt. We demonstrate that in the presence of NaCo(CO)4, the cationic precursor [CpN3]+ yields the complex CpN3CoI(CO)2. While 2e- oxidation generates new CoIII complexes such as [CpN3Co(NCMe)3]2+ and CpN3CoI2(CO), subsequent ligand loss is facile, generating free [CpN3]+ or the protonated dication [CpN3H]2+. We have structurally characterized both these ligand release products via single crystal X-ray diffraction and obtained thermochemical C-H bond strengths via experiment and density functional theory (DFT). Upon reversible 1e- reduction, the radical cation [CpN3H]˙+ has a weak C-H BDFE of 52 kcal mol-1 in acetonitrile. Mechanistic analysis shows that [CpN3H]˙+ undergoes radical-radical disproportionation in the absence of exogenous H-atom acceptors, which is supported by deuterium isotope labelling experiments. Structural comparison of these organic molecules shows a high degree of iminium-like electron delocalization over the C-N bonds connected to the central five-membered ring.

2.
Chem Commun (Camb) ; 60(6): 674-677, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38050452

ABSTRACT

Two-electron oxidation of a NiIIPh(PCP) pincer complex initiates phosphine ligand insertion, generating an η6-arylphosphonium moiety coordinated to NiII. The reaction is fully reversible under reducing conditions. X-ray crystallography, NMR/EPR spectroscopy, electrochemistry, and DFT calculations support the proposed Ni-C-P bond reorganization mechanisms, which access oxidation states from Ni0 to NiIV.

3.
Nat Rev Chem ; 7(8): 561-572, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37258685

ABSTRACT

The cyclopentadienyl (Cp) ligand is a cornerstone of modern organometallic chemistry. Since the discovery of ferrocene, the Cp ligand and its various derivatives have become foundational motifs in catalysis, medicine and materials science. Although largely considered an ancillary ligand for altering the stereoelectronic properties of transition metal centres, there is mounting evidence that the core Cp ring structure also serves as a reservoir for reactive protons (H+), hydrides (H-) or radical hydrogen (H•) atoms. This Review chronicles the field of Cp ring activation, highlighting the pivotal role that Cp ligands can have in electrocatalytic H2 production, N2 reduction, hydride transfer reactions and proton-coupled electron transfer.

4.
Chem Commun (Camb) ; 58(93): 12963-12966, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36322000

ABSTRACT

We report a rare redox-active Mn0 metalloradical [Mn(CO)3(Ph2B(tBuNHC)2)]- (NHC = N-heterocyclic carbene) with countercations [K(2.2.2)crypt]+, [Na(2.2.2)crypt]+, or [Li(DME)(12-crown-4)]+ (DME = 1,2-dimethoxyethane), all characterized via single crystal X-ray diffraction. Cyclic voltammograms reveal solvation-dependent MnI/0 redox potentials that are modeled using the Born equation.


Subject(s)
Heterocyclic Compounds , Heterocyclic Compounds/chemistry , Molecular Structure , Stereoisomerism , Ligands , Models, Molecular , Oxidation-Reduction
5.
J Am Chem Soc ; 144(28): 12632-12637, 2022 07 20.
Article in English | MEDLINE | ID: mdl-35786956

ABSTRACT

The scission of a C(sp3)-H bond to form a new metal-alkyl bond is a fundamental step in coordination chemistry and catalysis. However, the extent of C-H bond weakening when this moiety interacts with a transition metal is poorly understood and quantifying this phenomenon could provide insights into designing more efficient C-H functionalization catalysts. We present a nickel complex with a robust adamantyl reporter ligand that enables the measurement of C-H acidity (pKa) and bond dissociation free energy (BDFE) for a C(sp3)-H agostic interaction, showing a decrease in pKa by dozens of orders of magnitude and BDFE decrease of about 30 kcal/mol upon coordination. X-ray crystallographic data is provided for all molecules, including a distorted square planar NiIII metalloradical and "doubly agostic" NiII(κ2-CH2) complex.


Subject(s)
Metals , Nickel , Catalysis , Crystallography, X-Ray , Ligands , Nickel/chemistry
6.
Inorg Chem ; 60(22): 17407-17413, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34735115

ABSTRACT

We present monometallic H2 production electrocatalysts containing electron-rich triamine-cyclopentadienyl (Cp) ligands coordinated to iron. After selective CO extrusion from the iron tricarbonyl precursors, electrocatalysis is observed via cyclic voltammetry in the presence of an exogenous acid. Contrary to the fact that amines in the secondary coordination sphere are often protonated during electrocatalysis, comprehensive quantum-chemical calculations indicate that the amines likely do not function as proton relays; instead, endo-Cp ring protonation is most favorable after 1e- reduction. This unusual mechanistic pathway emphasizes the need to consider a broad domain of H+/e- addition products by synergistically combining experimental and theoretical resources.

7.
Dalton Trans ; 48(44): 16569-16577, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31560363

ABSTRACT

This work investigates the hydrogenation of carbon dioxide to formate catalysed by the phosphine-free Ru complexes Ru(OtBu)(κ3-NCN)(tBubpy) and RuH(OtBu)(κ2-NCN)(tBubpy) (OtBu = tert-butoxide, κ2-NCN = 1,3-di(2-methylpyridyl)-4,5-diphenyl-1H-imidazol-2-ylidene, where one pyridyl moiety is not coordinated to Ru, tBubpy = 4,4'-di-tert-butyl-2,2'-dipyridyl). A catalytic cycle is proposed for this reaction, supported by computational studies and the characterization of the hydride and the formate intermediates proposed to be involved. Modest catalytic turnovers are demonstrated at relatively low pressures and temperatures. The proposed rate determining step is heterolytic H2 splitting to regenerate the Ru-H complex, which has an estimated hydricity of approx. 27 kcal mol-1. The κ2-NCN ligand in the hydride complex undergoes a variety of dynamic processes as detected by EXSY spectroscopy including a pyridyl "roll-over" carbon-hydrogen - ruthenium hydride exchange, possibly occuring via a Perutz-Sabo-Etienne CAM mechanism.

8.
J Am Chem Soc ; 141(5): 1871-1876, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30669844

ABSTRACT

While diamagnetic transition metal complexes that bind and split H2 have been extensively studied, paramagnetic complexes that exhibit this behavior remain rare. The square planar S = 1/2 FeI(P4N2)+ cation (FeI+) reversibly binds H2/D2 in solution, exhibiting an inverse equilibrium isotope effect of KH2/ KD2 = 0.58(4) at -5.0 °C. In the presence of excess H2, the dihydrogen complex FeI(H2)+ cleaves H2 at 25 °C in a net hydrogen atom transfer reaction, producing the dihydrogen-hydride trans-FeII(H)(H2)+. The proposed mechanism of H2 splitting involves both intra- and intermolecular steps, resulting in a mixed first- and second-order rate law with respect to initial [FeI+]. The key intermediate is a paramagnetic dihydride complex, trans-FeIII(H)2+, whose weak FeIII-H bond dissociation free energy (calculated BDFE = 44 kcal/mol) leads to bimetallic H-H homolysis, generating trans-FeII(H)(H2)+. Reaction kinetics, thermodynamics, electrochemistry, EPR spectroscopy, and DFT calculations support the proposed mechanism.

9.
J Am Chem Soc ; 139(27): 9291-9301, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28613896

ABSTRACT

The geometric constraints imposed by a tetradentate P4N2 ligand play an essential role in stabilizing square planar Fe complexes with changes in metal oxidation state. The square pyramidal Fe0(N2)(P4N2) complex catalyzes the conversion of N2 to N(SiR3)3 (R = Me, Et) at room temperature, representing the highest turnover number of any Fe-based N2 silylation catalyst to date (up to 65 equiv N(SiMe3)3 per Fe center). Elevated N2 pressures (>1 atm) have a dramatic effect on catalysis, increasing N2 solubility and the thermodynamic N2 binding affinity at Fe0(N2)(P4N2). A combination of high-pressure electrochemistry and variable-temperature UV-vis spectroscopy were used to obtain thermodynamic measurements of N2 binding. In addition, X-ray crystallography, 57Fe Mössbauer spectroscopy, and EPR spectroscopy were used to fully characterize these new compounds. Analysis of Fe0, FeI, and FeII complexes reveals that the free energy of N2 binding across three oxidation states spans more than 37 kcal mol-1.

10.
Chem Commun (Camb) ; 52(36): 6138-41, 2016 05 04.
Article in English | MEDLINE | ID: mdl-27072981

ABSTRACT

A four-coordinate, sixteen-electron Ru(0) complex containing the tetradentate diamino-diolefin ligand (±)-trans-N,N-bis(5H-dibenzo[a,d]cyclohepten-5-yl)-1,2-diaminocyclohexane (trop2dach) has been synthesised. Deprotonation of one amino N-H functional group generates an unprecedented four-coordinate ruthenate species which has been characterised in solution and in the solid state. The newly formed ruthenate complex undergoes intramolecular metal-ligand N-H addition/elimination in solution to generate a transient diamido ruthenium hydride species, as supported by NMR spectroscopy and density functional theory.

11.
Chemistry ; 21(44): 15797-805, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26374167

ABSTRACT

The reactivity of the all-ferrous FeN heterocubane [Fe4 (Ntrop)4 ] (1) with i) Brønsted acids, ii) σ-donors, iii) σ-donors/π-acceptors, and iv) one-electron oxidants has been investigated (trop = 5H-dibenzo[a,d]cyclo-hepten-5-yl). 1 showed self-re-assembling after reactions with i) and proved surprisingly inert in reactions with ii) and iii), with the exception of CO. Reductive and oxidative cluster degradation was observed in reactions with CO and TEMPO, respectively. These reactions yielded new cluster compounds, namely a trinuclear bis(µ3 -imido) 48 electron complex in the former case and a tetranuclear all ferric µ-oxo-µ-imido species in the latter case. Characterization techniques include NMR and in situ IR spectroscopy, single crystal X-ray analysis, Mössbauer spectroscopy, cyclic voltammetry, magnetic susceptibility measurements, and DFT calculations.

12.
Chemistry ; 20(51): 16960-8, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25266279

ABSTRACT

Transition metal complexes that exhibit metal-ligand cooperative reactivity could be suitable candidates for applications in water splitting. Ideally, the ligands around the metal should not contain oxidizable donor atoms, such as phosphines. With this goal in mind, we report new phosphine-free ruthenium NCN pincer complexes with a central N-heterocyclic carbene donor and methylpyridyl N-donors. Reaction with base generates a neutral, dearomatized alkoxo-amido complex, which has been structurally and spectroscopically characterized. The tert-butoxide ligand facilitates regioselective, intramolecular proton transfer through a CH/OH bond cleavage process occurring at room temperature. Kinetic and thermodynamic data have been obtained by VT NMR experiments; DFT calculations support the observed behavior. Isolation and structural characterization of a doubly dearomatized phosphine complex also strongly supports our mechanistic proposal. The alkoxo-amido complex reacts with water to form a dearomatized ruthenium hydroxide complex, a first step towards phosphine-free metal-ligand cooperative water splitting.

13.
Dalton Trans ; 42(28): 10214-20, 2013 Jul 28.
Article in English | MEDLINE | ID: mdl-23728414

ABSTRACT

We report the synthesis of Ru(II) and Os(II) trans hydrido-hydroxo complexes by reacting the unsaturated amido complexes MH(NHCMe2CMe2NH2)(PPh3)2 (M = Ru, Os) with stoichiometric amounts of water. Proton exchange is rapid at room temperature between the amine/water/hydroxide moieties which leads to signal averaging of the NMR properties which can be slowed at low temperature in order to see resonances of separate complexes. These compounds can also be cleanly converted back to their starting complexes by dehydration in the presence of 3 Å molecular sieves. X-ray crystal structures of these Ru(II) and Os(II) trans hydrido-hydroxo complexes reveal that the unit cell contains an additional molecule of water trapped in the crystal lattice which hydrogen bonds with a neighbouring hydroxo ligand, forming a water bridged dimer in the solid state. Although there are many cases of oxidative addition of water to transition metal complexes, relatively few cases are well characterized where water addition occurs via metal-ligand cooperation (bifunctional addition) without altering the oxidation state of the metal center.

14.
Dalton Trans ; 40(40): 10603-8, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21822503

ABSTRACT

The complexation of di-(2-pyridylmethyl)amine to RuHCl(PPh(3))(3) affords the salt [RuH{κ(3)N-fac-1,3-di-(2-pyridylmethyl)amine}(PPh(3))(2)]Cl. Reaction with potassium tert-butoxide at room temperature yields the unusual ruthenaziridine complex RuH{κ(3)C(alk)NN(py)-1,3-di-(2-pyridylmethyl)amine}(PPh(3))(2), where the central nitrogen atom, adjacent alkyl carbon, and pyridine arm coordinate to the metal, leaving the second pyridine arm uncoordinated. Surprisingly, heating of this ruthenaziridine complex with concomitant H(2) formation affords the ruthenium azaallyl complex RuH(κ(3)N-1,3-di-(2-pyridyl)-2-azaallyl)(PPh(3))(2). This is a rare example of a 4d metal complex containing the azaallyl ligand. X-Ray crystal structures and NMR characterization of all three compounds are presented herein.

15.
Dalton Trans ; (43): 6023-9, 2008 Nov 21.
Article in English | MEDLINE | ID: mdl-19082059

ABSTRACT

A series of air- and moisture-stable iminoisoindoline-based palladacycles have been prepared in two operationally simple steps from commercially available reagents. para-Substituted N,N'-diphenyliminoisoindoline ligands are easily synthesized from phthalaldehyde and para-substituted anilines and further reaction of the iminoisoindoline ligands with Pd(OAc)(2) in dichloromethane at room temperature results in formation of six-membered [C,N] dinuclear cyclopalladated complexes with the general formula [(iminoisoindoline)Pd(micro-OAc)](2). The resulting palladacyclic complexes were tested as precatalysts in Heck and Suzuki coupling reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...