Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(6)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072903

ABSTRACT

Magnetomechanical therapy is one of the most perspective directions in tumor microsurgery. According to the analysis of recent publications, it can be concluded that a nanoscalpel could become an instrument sufficient for cancer microsurgery. It should possess the following properties: (1) nano- or microsized; (2) affinity and specificity to the targets on tumor cells; (3) remote control. This nano- or microscalpel should include at least two components: (1) a physical nanostructure (particle, disc, plates) with the ability to transform the magnetic moment to mechanical torque; (2) a ligand-a molecule (antibody, aptamer, etc.) allowing the scalpel precisely target tumor cells. Literature analysis revealed that the most suitable nanoscalpel structures are anisotropic, magnetic micro- or nanodiscs with high-saturation magnetization and the absence of remanence, facilitating scalpel remote control via the magnetic field. Additionally, anisotropy enhances the transmigration of the discs to the tumor. To date, four types of magnetic microdiscs have been used for tumor destruction: synthetic antiferromagnetic P-SAF (perpendicular) and SAF (in-plane), vortex Py, and three-layer non-magnetic-ferromagnet-non-magnetic systems with flat quasi-dipole magnetic structures. In the current review, we discuss the biological effects of magnetic discs, the mechanisms of action, and the toxicity in alternating or rotating magnetic fields in vitro and in vivo. Based on the experimental data presented in the literature, we conclude that the targeted and remotely controlled magnetic field nanoscalpel is an effective and safe instrument for cancer therapy or theranostics.

2.
Nucleic Acid Ther ; 27(2): 105-114, 2017 04.
Article in English | MEDLINE | ID: mdl-27923103

ABSTRACT

Magnetomechanical cell disruption using nano- and microsized structures is a promising biomedical technology used for noninvasive elimination of diseased cells. It applies alternating magnetic field (AMF) for ferromagnetic microdisks making them oscillate and causing cell membrane disruption with cell death followed by apoptosis. In this study, we functionalized the magnetic microdisks with cell-binding DNA aptamers and guided the microdisks to recognize cancerous cells in a mouse tumor in vivo. Only 10 min of the treatment with a 100 Hz AMF was enough to eliminate cancer cells from a malignant tumor. Our results demonstrate a good perspective of using aptamer-modified magnetic microdisks for noninvasive microsurgery for tumors.


Subject(s)
Aptamers, Nucleotide/metabolism , Carcinoma, Ehrlich Tumor/therapy , Magnetic Field Therapy/methods , Magnetic Fields , Microsurgery/methods , Animals , Aptamers, Nucleotide/chemical synthesis , Carcinoma, Ehrlich Tumor/metabolism , Carcinoma, Ehrlich Tumor/pathology , Fibronectins/metabolism , Filamins/metabolism , Injections, Intralesional , Magnetic Field Therapy/instrumentation , Magnets , Male , Mice , Mice, Inbred ICR , Neoplasm Transplantation , Protein Binding , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...