Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biol ; 21(1): 249, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37940940

ABSTRACT

BACKGROUND: Shifts in dynamic equilibria of the abundance of cellular molecules in plant-pathogen interactions need further exploration. We induced PTI in optimally growing Arabidopsis thaliana seedlings for 16 h, returning them to growth conditions for another 16 h. METHODS: Turn-over and abundance of 99 flg22 responding proteins were measured chronologically using a stable heavy nitrogen isotope partial labeling strategy and targeted liquid chromatography coupled to mass spectrometry (PRM LC-MS). These experiments were complemented by measurements of mRNA and phytohormone levels. RESULTS: Changes in synthesis and degradation rate constants (Ks and Kd) regulated tryptophane and glucosinolate, IAA transport, and photosynthesis-associated protein (PAP) homeostasis in growth/PTI transitions independently of mRNA levels. Ks values increased after elicitation while protein and mRNA levels became uncorrelated. mRNA returned to pre-elicitation levels, yet protein abundance remained at PTI levels even 16 h after media exchange, indicating protein levels were robust and unresponsive to transition back to growth. The abundance of 23 PAPs including FERREDOXIN-NADP( +)-OXIDOREDUCTASE (FNR1) decreased 16 h after PAMP exposure, their depletion was nearly abolished in the myc234 mutant. FNR1 Kd increased as mRNA levels decreased early in PTI, its Ks decreased in prolonged PTI. FNR1 Kd was lower in myc234, mRNA levels decreased as in wild type. CONCLUSIONS: Protein Kd and Ks values change in response to flg22 exposure and constitute an additional layer of protein abundance regulation in growth defense transitions next to changes in mRNA levels. Our results suggest photosystem remodeling in PTI to direct electron flow away from the photosynthetic carbon reaction towards ROS production as an active defense mechanism controlled post-transcriptionally and by MYC2 and homologs. Target proteins accumulated later and PAP and auxin/IAA depletion was repressed in myc234 indicating a positive effect of the transcription factors in the establishment of PTI.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Tryptophan/genetics , Tryptophan/metabolism , Tryptophan/pharmacology , Photosynthesis , RNA, Messenger/metabolism , Gene Expression Regulation, Plant
2.
Molecules ; 27(20)2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36296471

ABSTRACT

Capsaicin, produced by diverse Capsicum species, is among the world's most popular spices and of considerable pharmaceutical relevance. Although the capsaicinoid biosynthetic pathway has been investigated for decades, several biosynthetic steps have remained partly hypothetical. Genetic evidence suggested that the decisive capsaicin synthase is encoded by the Pun1 locus. Yet, the genetic evidence of the Pun1 locus was never corroborated by functionally active capsaicin synthase that presumably catalyzes an amide bond formation between trans 8-methyl-6-nonenoyl-CoA derived from branched-chain amino acid biosynthesis and vanilloylamine derived from the phenylpropanoid pathway. In this report, we demonstrate the enzymatic activity of a recombinant capsaicin synthase encoded by Pun1, functionally expressed in Escherichia coli, and provide information on its substrate specificity and catalytic properties. Recombinant capsaicin synthase is specific for selected aliphatic CoA-esters and highly specific for vanilloylamine. Partly purified from E. coli, the recombinant active enzyme is a monomeric protein of 51 kDa that is independent of additional co-factors or associated proteins, as previously proposed. These data can now be used to design capsaicin synthase variants with different properties and alternative substrate preferences.


Subject(s)
Capsaicin , Escherichia coli Proteins , Capsaicin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Amino Acids, Branched-Chain , Pharmaceutical Preparations , Coenzyme A , Bacterial Outer Membrane Proteins
3.
Front Plant Sci ; 12: 744103, 2021.
Article in English | MEDLINE | ID: mdl-34858452

ABSTRACT

Despite its central role as the ark of genetic information and gene expression the plant nucleus is surprisingly understudied. We isolated nuclei from the Arabidopsis thaliana dark grown cell culture left untreated and treated with flg22 and nlp20, two elicitors of pattern triggered immunity (PTI) in plants, respectively. An liquid chromatography mass spectrometry (LC-MS) based discovery proteomics approach was used to measure the nuclear proteome fractions. An enrichment score based on the relative abundance of cytoplasmic, mitochondrial and Golgi markers in the nuclear protein fraction allowed us to curate the nuclear proteome producing high quality catalogs of around 3,000 nuclear proteins under untreated and both PTI conditions. The measurements also covered low abundant proteins including more than 100 transcription factors and transcriptional co-activators. We disclose a list of several hundred potentially dual targeted proteins including proteins not yet found before for further study. Protein import into the nucleus in plant immunity is known. Here we sought to gain a broader impression of this phenomenon employing our proteomics data and found 157 and 73 proteins to possibly be imported into the nucleus upon stimulus with flg22 and nlp20, respectively. Furthermore, the abundance of 93 proteins changed significantly in the nucleus following elicitation of immunity. These results suggest promiscuous ribosome assembly and a role of prohibitins and cytochrome C in the nucleus in PTI.

4.
Mol Plant ; 13(12): 1709-1732, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33007468

ABSTRACT

Proteome remodeling is a fundamental adaptive response, and proteins in complexes and functionally related proteins are often co-expressed. Using a deep sampling strategy we define core proteomes of Arabidopsis thaliana tissues with around 10 000 proteins per tissue, and absolutely quantify (copy numbers per cell) nearly 16 000 proteins throughout the plant lifecycle. A proteome-wide survey of global post-translational modification revealed amino acid exchanges pointing to potential conservation of translational infidelity in eukaryotes. Correlation analysis of protein abundance uncovered potentially new tissue- and age-specific roles of entire signaling modules regulating transcription in photosynthesis, seed development, and senescence and abscission. Among others, the data suggest a potential function of RD26 and other NAC transcription factors in seed development related to desiccation tolerance as well as a possible function of cysteine-rich receptor-like kinases (CRKs) as ROS sensors in senescence. All of the components of ribosome biogenesis factor (RBF) complexes were found to be co-expressed in a tissue- and age-specific manner, indicating functional promiscuity in the assembly of these less-studied protein complexes in Arabidopsis.Furthermore, we characterized detailed proteome remodeling in basal immunity by treating Arabidopsis seeldings with flg22. Through simultaneously monitoring phytohormone and transcript changes upon flg22 treatment, we obtained strong evidence of suppression of jasmonate (JA) and JA-isoleucine (JA-Ile) levels by deconjugation and hydroxylation by IAA-ALA RESISTANT3 (IAR3) and JASMONATE-INDUCED OXYGENASE 2 (JOX2), respectively, under the control of JASMONATE INSENSITIVE 1 (MYC2), suggesting an unrecognized role of a new JA regulatory switch in pattern-triggered immunity. Taken together, the datasets generated in this study present extensive coverage of the Arabidopsis proteome in various biological scenarios, providing a rich resource available to the whole plant science community.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/immunology , Plant Development , Plant Immunity , Proteome/metabolism , Arabidopsis/genetics , Cyclopentanes/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Models, Biological , Oxylipins/metabolism , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
Int J Mol Sci ; 19(12)2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30558315

ABSTRACT

Due to low culturing costs and high seed protein contents, legumes represent the main global source of food protein. Pea (Pisum sativum L.) is one of the major legume crops, impacting both animal feed and human nutrition. Therefore, the quality of pea seeds needs to be ensured in the context of sustainable crop production and nutritional efficiency. Apparently, changes in seed protein patterns might directly affect both of these aspects. Thus, here, we address the pea seed proteome in detail and provide, to the best of our knowledge, the most comprehensive annotation of the functions and intracellular localization of pea seed proteins. To address possible intercultivar differences, we compared seed proteomes of yellow- and green-seeded pea cultivars in a comprehensive case study. The analysis revealed totally 1938 and 1989 nonredundant proteins, respectively. Only 35 and 44 proteins, respectively, could be additionally identified after protamine sulfate precipitation (PSP), potentially indicating the high efficiency of our experimental workflow. Totally 981 protein groups were assigned to 34 functional classes, which were to a large extent differentially represented in yellow and green seeds. Closer analysis of these differences by processing of the data in KEGG and String databases revealed their possible relation to a higher metabolic status and reduced longevity of green seeds.


Subject(s)
Chlorophyll/analysis , Pisum sativum/chemistry , Plant Proteins/analysis , Seeds/chemistry , Amino Acid Sequence , Chemical Precipitation , Pisum sativum/embryology , Proteome/analysis , Proteomics , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...