Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 12(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37507966

ABSTRACT

Tri-Yannarose is a Thai traditional herbal medicine formula composed of Areca catechu, Azadirachta indica, and Tinospora crispa. It possesses antipyretic, diuretic, expectorant, and appetite-stimulating effects. This study aimed to evaluate the antioxidant activities, cytotoxicity, and chemical constituents of an aqueous extract following a Tri-Yannarose recipe and its plant ingredients. The phytochemical analysis was performed using LC-QTOF-MS. Antioxidant activities were determined using DPPH, ABTS, TPC, TFC, FRAP, NBT, MCA, and ORAC assays. Cytotoxicity was investigated using a methyl thiazol tetrazolium (MTT) assay. In addition, the relationship between the chemical composition of Tri-Yannarose and antioxidant activities was investigated by examining the structure-activity relationship (SAR). The results of the LC-QTOF-MS analysis revealed trigonelline, succinic acid, citric acid, and other chemical constituents. The aqueous extract of the recipe showed significant scavenging effects against ABTS and DPPH radicals, with IC50 values of 1054.843 ± 151.330 and 747.210 ± 44.173 µg/mL, respectively. The TPC of the recipe was 92.685 mg of gallic acid equivalent/g of extract and the TFC was 14.160 mg of catechin equivalent/g of extract. All extracts demonstrated lower toxicity in the Vero cell line according to the MTT assay. In addition, the SAR analysis indicated that prenyl arabinosyl-(1-6)-glucoside and quinic acid were the primary antioxidant compounds in the Tri-Yannarose extract. In conclusion, this study demonstrates that Tri-Yannarose and its plant ingredients have potent antioxidant activities with low toxicity. These results support the application of the Tri-Yannarose recipe for the management of a range of disorders related to oxidative stress.

2.
BMC Complement Med Ther ; 22(1): 217, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953870

ABSTRACT

BACKGROUND: Prasachandaeng (PSD) remedy has been empirically used in Thai traditional medicine to treat fever in bile duct and liver and cancer patients through Thai folk doctors. However, there have been no scientific reports on the bioactive compounds and bioactivities related to inflammation-associated carcinogenesis or cytotoxicity against cancer cell lines. In this study, we investigated the chemical content of the remedy, and evaluated its cytotoxic activity against two cancer cell lines in comparison with a non-cancerous cell line and determined tumor necrosis factor-alpha (TNF-α) production in a murine macrophage cell line (RAW 264.7) to evaluate anti-inflammatory activity. A novel HPLC method was used for quality control of its chemical content. METHODS: Pure compounds from the EtOH extract of D. cochinchinensis were isolated using bioassay-guided fractionation and chemical content of the PSD remedy was determined using HPLC. The cytotoxic activity against the hepatocarcinoma cell line (HepG2) and cholangiocarcinoma cell line (KKU-M156), in comparison with non-cancerous cell line (HaCaT), were investigated using antiproliferative assay (SRB). The anti-inflammatory activity measured by TNF-α production in RAW 264.7 was determined using ELISA. RESULTS: All crude extracts and isolated compounds exhibited significant differences from vincristine sulfate (****p < 0.0001) in their cytotoxic activity against HepG2, KKU-M156, and HaCaT. The PSD remedy exhibited cytotoxic activity against HepG2 and KKU-M156 with IC50 values of 10.45 ± 1.98 (SI = 5.3) and 4.53 ± 0.74 (SI = 12.2) µg/mL, respectively. Some constituents from C. sappan, D. cochinchinensis, M. siamensis, and M. fragrans also exhibited cytotoxic activity against HepG2 and KKU-M156, with IC50 values less than 10 µg/mL. The isolated compounds, i.e., Loureirin B (1), 4-Hydroxy-2,4'-dimethoxydihydrochalcone (2), and Eucomol (3) exhibited moderate cytotoxicity against two cancer cell lines. None of the crude extracts and isolated compounds showed cytotoxicity against HaCaT. D. cochinchinensis and PSD remedy exhibited higher anti-inflammatory activity measured as TNF-α production than acetaminophen. CONCLUSION: The findings provide evidence of bioactivity for EtOH extracts of PSD remedy and the isolated compounds of D. Cochinchinensis. The results consistent the use clinical activity and use of PSD remedy as a antipyretic treatment for liver and bile duct cancer patients by Thai traditional practitioners.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Animals , Anti-Inflammatory Agents/pharmacology , Bile Duct Neoplasms/drug therapy , Bile Ducts, Intrahepatic , Cell Line, Tumor , Cholangiocarcinoma/drug therapy , Humans , Mice , Plant Extracts/chemistry , Tumor Necrosis Factor-alpha
3.
Plants (Basel) ; 11(14)2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35890469

ABSTRACT

PCSK9 is a promising target for developing novel cholesterol-lowering drugs. We developed a recipe that combined molecular docking, GC-MS/MS, and real-time PCR to identify potential PCSK9 inhibitors for herb ratio determination. Three herbs, Carthamus tinctorius, Coscinium fenestratum, and Zingiber officinale, were used in this study. This work aimed to evaluate cholesterol-lowering through a PCSK9 inhibitory mechanism of these three herbs for defining a suitable ratio. Chemical constituents were identified using GC-MS/MS. The PCSK9 inhibitory potential of the compounds was determined using molecular docking, real-time PCR, and Oil red O staining. It has been shown that most of the active compounds of C. fenestratum and Z. officinale inhibit PCSK9 when extracted with water, and C. fenestratum has been shown to yield tetraacetyl-d-xylonic nitrile (27.92%) and inositol, 1-deoxy-(24.89%). These compounds could inhibit PCSK9 through the binding of 6 and 5 hydrogen bonds, respectively, while the active compound in Z. officinale is 2-Formyl-9-[.beta.-d-ribofuranosyl] hypoxanthine (4.37%) inhibits PCSK9 by forming 8 hydrogen bonds. These results suggest that a recipe comprising three parts C. fenestratum, two parts Z. officinale, and one part C. tinctorius is a suitable herbal ratio for reducing lipid levels in the bloodstream through a PCSK9 inhibitory mechanism.

4.
Biomed Pharmacother ; 147: 112673, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35123231

ABSTRACT

Prasachandaeng (PSD) remedy from the Thailand National List of Essential Medicines (NLEM) has been used as an antipyretic for chronic fever in both adults and children for centuries. Its therapeutic effect in treating fever and its safety have not been studied in animal models. We evaluated its antipyretic activity on lipopolysaccharide (LPS)-induced fever and safety in the liver in comparison with acetaminophen (ACP). Correlation between biochemistry of liver function and the level of cytochrome P450 (CYP2E1) was also evaluated using an ELISA kit. All doses of PSD powder (PSDP) and a 95% ethanol extract of PSD (PSDE) (50, 200, and 400 mg/kg) showed a significant antipyretic effect (* p < 0.05) as compared to ACP. We investigated clinical biochemistry of liver and kidney functions, histopathology, and concentrations of CYP2E1. All treatment groups demonstrated a normal range of clinical biochemistry of liver and kidney functions in comparison with ACP on days 1, 3, 7, and 10. Serum AST, ALP, and LDH levels of PSDE and PSDP showed mean values less than that of ACP on the corresponding days (* p < 0.05). None of the treatment groups showed evidence of hepatocellular damage, nor did they affect CYPE21. The results of histopathology on liver tissue correlated with the biochemistry of liver functions which indicated no hepatotoxicity effect in liver tissue during the seven day treatment. These findings suggest that both forms of PSD remedy possessed marked antipyretic activity and were not hepatotoxic during the seven days of administration in rats.


Subject(s)
Antipyretics/pharmacology , Fever/drug therapy , Phytotherapy/methods , Acetaminophen/pharmacology , Animals , Antipyretics/administration & dosage , Antipyretics/adverse effects , Cytochrome P-450 CYP2E1/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Fever/chemically induced , Kidney Function Tests , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver Function Tests , Male , Rats , Rats, Sprague-Dawley , Thailand
5.
J Ethnopharmacol ; 268: 113520, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33129948

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Prasachandaeng (PSD) remedy is a famous antipyretic drug for adults and children in Thai traditional medicine used and is described in Thailand's National List of Essential Medicine. Relationship between the taste of this herbal medicine, ethnopharmacological used and its pharmacological properties was reviewed. AIMS OF STUDY: Since there has been no scientific report on the antipyretic activity of PSD, aim of this study was to investigate the efficacy related antipyretic drug of the remedy and its 12 herbal ingredients. It involved quality evaluation of raw materials, extraction of PSD and its ingredients, in vitro evaluation of their inhibitory activities on fever mediators, i.e. NO and PGE2 production in murine macrophage (RAW 264.7) cell line stimulated by lipopolysaccharide, and its stability study of the 95% ethanolic extract of PSD remedy. MATERIALS AND METHODS: PSD remedy was extracted by maceration with 50% and 95% ethanol (PSD50 and PSD95), by decoction with distilled water (PSDW), and hydrolysis of PSDW with 0.1 N HCl (PSDH). The 12 plant ingredients were extracted with 95% ethanol. Quality evaluation of PSD ingredients was performed according to the standard procedures for the quality control of herbal materials. The inhibitory activity on nitric oxide production was determined by the Griess reaction and the inhibition of prostaglandin E2 production was determined using the ELISA test kit. RESULTS: PSD ingredients passed the quality standard stipulated for herbal materials. PSD95 exhibited the highest inhibitory activities on the production of NO and PGE2 with the IC50 values of 42.40 ± 0.72 and 4.65 ± 0.76 µg/mL, respectively. A standard drug acetaminophen (ACP) exhibited inhibition of NO and PGE2 production with the IC50 values of 99.50 ± 0.43 and 6.110 ± 0.661 µg/mL, respectively. The stability study was suggested two years shelf-life of PSD95. This is the first report on the activity related antipyretic activity of PSD remedy and its ingredients against two fever mediators, NO and PGE2. CONCLUSION: The results suggested that the 95% ethanolic extracts of PSD remedy and some of its ingredients, were better than ACP in reducing fever. PSD should be further studied using in vivo models and clinical trials to support its use as an antipyretic drug in Thai traditional medicine.


Subject(s)
Antipyretics/chemistry , Antipyretics/pharmacology , Medicine, Traditional/methods , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal , Animals , Antipyretics/isolation & purification , Dinoprostone/antagonists & inhibitors , Dinoprostone/metabolism , Mice , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , Plant Extracts/isolation & purification , RAW 264.7 Cells , Thailand/ethnology
6.
Article in English | MEDLINE | ID: mdl-32308716

ABSTRACT

The aril (mace) of Myristica fragrans, known as Dok-Chan, is a spice that has long been used for treating stomach discomfort, peptic ulcer, and nausea. It is an ingredient in many remedies in Thai traditional medicine, e.g., Ya-Hom-Thep-Bha-Jit, Ya-Hom-Nao-Wa-Kot, and Ya-That-Bun-Job, which are used to treat dyspepsia and other gastrointestinal tract symptoms. The aqueous and ethanolic extracts of mace were used for all tests. Anti-H. pylori activities were determined by the disc diffusion method and agar dilution. Anti-inflammatory activity was determined by the LPS-induced nitric oxide (NO) inhibition in a RAW264.7 cell line, and cytotoxicity was determined against gastric cancer cell lines (Kato III) using the sulphorhodamine B (SRB) assay. The DPPH radical scavenging and ABTS radical cation decolorization assays were used to determine the antioxidant activities. The result found that the ethanolic extract of mace exhibited antimicrobial activity against H. pylori ATCC 43504 and six clinical strains with MIC values of 125-250 µg/ml. The aqueous extract MICs against H. pylori ATCC reference strain and six clinical strains were 500 µg/ml compared with 0.5 µg/ml for the positive control, clarithromycin. The inhibitory effect of LPS-induced NO release and cytotoxic activity of the ethanolic extract had IC50 values of 82.19 µg/ml and 26.06 µg/ml, respectively, and the EC50 values for the DPPH and ABTS antioxidant assays were 13.41 µg/ml and 12.44 µg/ml, respectively. The mace extract also had anticancer properties. In conclusion, the ethanolic mace extract had anti-H. pylori, anti-inflammatory, antioxidant, and anticancer activities. These data support further preclinical and clinical investigation to see if the mace extract could have a role in treating patients with dyspepsia, peptic ulcers, and possibly gastric cancer.

7.
J Integr Med ; 15(4): 310-319, 2017 07.
Article in English | MEDLINE | ID: mdl-28659236

ABSTRACT

OBJECTIVE: To investigate the antioxidant activities as well as phytochemical constituents of Antidesma thwaitesianum Müll. Arg. leaf extracts. METHODS: The leaves of A. thwaitesianum were extracted using three different methods: blending with distilled water, maceration with ethanol and decoction. The chemical antioxidant activity of the plant leaf extracts was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) radical and 2,2'-azinobis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS⁺) radical scavenging assays, as well as the ferric reducing antioxidant power assay. Cellular antioxidant activity was determined by superoxide and nitric oxide scavenging assays. The cytotoxicity of the leaf extracts in RAW 264.7 and differentiated HL-60 cells was tested in parallel using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assays, respectively. The total phenolic and flavonoid contents were also assessed by spectrophotometric analysis. Phytochemical constituents of the most potent extract were investigated by liquid chromatography with an electrospray ionization quadrupole time-of-flight mass spectrometer (LC-ESI-QTOF-MS/MS). RESULTS: The ethanolic (ME) and decoction (LW) extracts of dried leaves had the highest chemical scavenging activity against DPPH and ABTS⁺ free radicals with half maximal effective concentration (EC50) values ranging from 3.54 to 6.44 µg/mL. ME and LW exerted moderate ferric reducing activity, with ferric reducing antioxidant power values of 847.41 and 941.26 mg Fe2+/g extract, respectively. Similarly, ME showed potent cellular scavenging activity against superoxide and nitric oxide radicals with EC50 values of 58.12 and 71.90 µg/mL, respectively. However, LW exhibited only strong nitric oxide scavenging activity with an EC50 value of 91.20 µg/mL. The cell viability of RAW 264.7 and HL-60 cells was greater than 70% in all tested concentrations of both extracts, thus confirming the absence of their cytotoxicity. ME and LW contained high total phenolic contents of 231.14 and 274.42 mg gallic acid equivalents per gram, respectively, as well as high total flavonoid contents of 18.82 and 22.17 mg quercetin equivalents per gram, respectively. LC-ESI-QTOF-MS/MS analysis revealed the presence of 52 structurally characterized compounds in ME, 43 of which were tentatively identified. Hydroxycinnamic acids such as caffeic acid and its derivatives were the predominant phenolic compounds. CONCLUSION: This is the first report describing potent chemical and cellular antioxidant effects of the ethanolic leaf extract of A. thwaitesianum. The extract contained high total phenolic and flavonoid contents. LC-ESI-QTOF-MS/MS analysis further revealed an abundance of caffeic acid derivatives and flavonoids. These data support its potential use as dietary supplements in oxidative stress prevention.


Subject(s)
Antioxidants/pharmacology , Euphorbiaceae , Phytochemicals/analysis , Plant Extracts/pharmacology , Euphorbiaceae/chemistry , Flavonoids/analysis , HL-60 Cells , Humans , Phenols/analysis , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...