Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Hum Gene Ther ; 34(19-20): 1003-1021, 2023 10.
Article in English | MEDLINE | ID: mdl-37597192

ABSTRACT

For successful vector-based gene therapy manufacturing, the selected adeno-associated virus (AAV) vector production system must produce vector at sufficient scale. However, concerns have arisen regarding the quality of vector produced using different systems. In this study, we compared AAV serotypes 1, 8, and 9 produced by two different systems (Sf9/baculovirus and HEK293/transfection) and purified by two separate processes. We evaluated capsid properties, including protein composition, post-translational modification, particle content profiles, and in vitro and in vivo vector potency. Vectors produced in the Sf9/baculovirus system displayed reduced incorporation of viral protein 1 and 2 into the capsid, increased capsid protein deamidation, increased empty and partially packaged particles in vector preparations, and an overall reduced potency. The differences observed were largely independent of the harvest method and purification process. These findings illustrate the need for careful consideration when choosing an AAV vector production system for clinical production.


Subject(s)
Capsid Proteins , Capsid , Humans , Capsid Proteins/genetics , Capsid Proteins/metabolism , Capsid/metabolism , HEK293 Cells , Genetic Vectors/genetics , Dependovirus/genetics , Dependovirus/metabolism
2.
Mol Ther Methods Clin Dev ; 2: 15040, 2015.
Article in English | MEDLINE | ID: mdl-26605372

ABSTRACT

Recent successes of adeno-associated virus (AAV)-based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE), we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering) differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37) and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9). The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA) resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors' in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.

3.
Bioorg Med Chem Lett ; 20(8): 2617-21, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20303756

ABSTRACT

In the search for a second generation HCV protease inhibitor, molecular modeling studies of the X-ray crystal structure of Boceprevir1 bound to the NS3 protein suggest that expansion into the S4 pocket could provide additional hydrophobic Van der Waals interactions. Effective replacement of the P4 tert-butyl with a cyclohexylmethyl ligand led to inhibitor 2 with improved enzyme and replicon activities. Subsequent modeling and SAR studies led to the pyridine 38 and sulfone analogues 52 and 53 with vastly improved PK parameters in monkeys, forming a new foundation for further exploration.


Subject(s)
Antiviral Agents/chemistry , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Area Under Curve , Biological Availability , Crystallography, X-Ray , Haplorhini , Models, Molecular , Proline/chemistry , Proline/pharmacokinetics , Proline/pharmacology , Protease Inhibitors/pharmacokinetics , Protease Inhibitors/pharmacology , Rats , Structure-Activity Relationship
4.
ACS Med Chem Lett ; 1(2): 64-9, 2010 May 13.
Article in English | MEDLINE | ID: mdl-24900178

ABSTRACT

Boceprevir (SCH 503034), 1, a novel HCV NS3 serine protease inhibitor discovered in our laboratories, is currently undergoing phase III clinical trials. Detailed investigations toward a second generation protease inhibitor culminated in the discovery of narlaprevir (SCH 900518), 37, with improved potency (∼10-fold over 1), pharmacokinetic profile and physicochemical characteristics, currently in phase II human trials. Exploration of synthetic sequence for preparation of 37 resulted in a route that required no silica gel purification for the entire synthesis.

6.
Biochemistry ; 48(46): 11045-55, 2009 Nov 24.
Article in English | MEDLINE | ID: mdl-19824700

ABSTRACT

Current antimitotic cancer chemotherapy based on vinca alkaloids and taxanes target tubulin, a protein required not only for mitotic spindle formation but also for the overall structural integrity of terminally differentiated cells. Among many innovations targeting specific mitotic events, inhibition of motor enzymes including KSP (or Eg5) has been validated as a highly productive approach. Many reported KSP inhibitors bind to an induced allosteric site near the site of ATP hydrolysis, and some have been tested in clinical trials with varying degrees of success. This allosteric site was defined in detail by X-ray crystallography of inhibitor complexes, yet complementary information on binding thermodynamics is still lacking. Using two model ATP-uncompetitive inhibitors, monastrol and ispinesib, we report here the results of thermal denaturation and isothermal titration calorimetric studies. These binding studies were conducted with the wild-type KSP motor domain as well as two ispinesib mutants (D130V and A133D) identified to confer resistance to ispinesib treatment. The thermodynamic parameters obtained were placed in the context of the available structural information and corresponding models of the two ispinesib-resistant mutants. The resulting overall information formed a strong basis for future structure-based design of inhibitors of KSP and related motor enzymes.


Subject(s)
Benzamides/pharmacology , Drug Resistance, Neoplasm , Enzyme Inhibitors/pharmacology , Kinesins/genetics , Kinesins/metabolism , Nucleotides/metabolism , Quinazolines/pharmacology , Thermodynamics , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/analogs & derivatives , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Substitution , Benzamides/metabolism , Biocatalysis , Calorimetry , Circular Dichroism , Drug Resistance, Neoplasm/genetics , Enzyme Inhibitors/metabolism , Humans , Kinesins/antagonists & inhibitors , Kinetics , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Nucleotides/chemistry , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Pyrimidines/chemistry , Pyrimidines/metabolism , Quinazolines/metabolism , Recombinant Fusion Proteins/antagonists & inhibitors , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Temperature , Thiones/chemistry , Thiones/metabolism , Transition Temperature
7.
Bioorg Med Chem ; 17(13): 4486-95, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19481946

ABSTRACT

Hepatitis C Virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 200 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or PEG-interferon alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only approximately 50% of the patients showing sustained virological response. We recently disclosed the discovery of Boceprevir, SCH 503034 (1), which is a novel, potent, selective, orally bioavailable NS3 protease inhibitor that has been shown to be efficacious in humans and is currently undergoing clinical trials. As second generation compounds, we have further explored various novel structures with the aim of improving enzyme and cellular binding activities of 1. Herein, we disclose our efforts toward the identification of a novel P(3) sulfonamide-capped inhibitor that demonstrated improved binding and cellular activity compared to 1. X-ray structure of one of these inhibitors bound to the enzyme revealed a hydrogen bond of the P(3) sulfonamide group to Cys-159 which resulted in improved binding and cellular potency.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepacivirus/enzymology , Sulfonamides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Crystallography, X-Ray , Drug Discovery , Humans , Models, Molecular , Protein Binding , Rats , Structure-Activity Relationship , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Virus Replication/drug effects
8.
J Med Chem ; 52(5): 1370-9, 2009 Mar 12.
Article in English | MEDLINE | ID: mdl-19196021

ABSTRACT

The hepatitis C virus (HCV) infection is a leading cause of chronic liver disease. The moderate efficacy along with side effects of the current pegylated interferon and ribavirin combination therapy underscores the need for more effective and safer new treatment. In an effort to improve upon our current clinical candidate, Boceprevir (SCH 503034), extensive SAR studies were performed on the P3 capping moieties. This led to the discovery of tert-leucinol derived cyclic imides as a potent series of novel P3 capping groups. Thus, the introduction of these imide caps improved the cell-based replicon EC(90) by more than 10-fold. A number of imides with various substitutions, ring sizes, bicyclic systems, and heterocyclic rings were explored. The 4,4-dimethyl substituted glutarimide emerged as the best cap as exemplified in compound 21 (K(i)* = 4 nM, EC(90) = 40 nM). Systematic optimization of different positions (P', P3, and P1) of the inhibitor resulted in the identification of the lead compound 46, which had an excellent potency (K(i)* = 4 nM, EC(90) = 30 nM) and good pharmacokinetic profile (22% and 35% bioavailability in rats and dogs, respectively). X-ray structure of inhibitor 46 bound to the enzyme revealed that there was an additional hydrogen bonding interaction between one of the imide carbonyls and Cys159.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/enzymology , Piperidones/chemical synthesis , Serine Proteinase Inhibitors/chemical synthesis , Urea/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/pharmacokinetics , Antiviral Agents/pharmacology , Biological Availability , Crystallography, X-Ray , Dogs , Haplorhini , Hepacivirus/genetics , Hydrogen Bonding , Imides/chemical synthesis , Imides/chemistry , Leucine/analogs & derivatives , Leucine/chemical synthesis , Leucine/chemistry , Models, Molecular , Piperidones/pharmacokinetics , Piperidones/pharmacology , Rats , Serine Proteinase Inhibitors/pharmacokinetics , Serine Proteinase Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacokinetics , Urea/pharmacology
9.
Bioorg Med Chem Lett ; 19(1): 180-3, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19022670

ABSTRACT

Chronic hepatitis C infection is the leading causes for cirrhosis of the liver and hepatocellular carcinoma, leading to liver failure and liver transplantation. The etiological agent, HCV virus produces a single positive strand of RNA that is processed with the help of serine protease NS3 to produce mature virus. Inhibition of NS3 protease can be potentially used to develop effective drugs for HCV infections. Numerous efforts are now underway to develop potent inhibitors of HCV protease that contain ketoamides as serine traps. Herein we report the synthesis of a series of potent inhibitors that contain a boronic acid as a serine trap. The activity of these compounds were optimized to 200pM. X-ray structure of compound 17 bound to NS3 protease is also discussed.


Subject(s)
Antiviral Agents/chemical synthesis , Boronic Acids/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Amides/chemical synthesis , Amides/pharmacology , Antiviral Agents/pharmacology , Boronic Acids/pharmacology , Crystallography, X-Ray , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology
10.
J Med Chem ; 52(2): 336-46, 2009 Jan 22.
Article in English | MEDLINE | ID: mdl-19102654

ABSTRACT

Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, and affects more than 200 million people worldwide. Although combination therapy of interferon-alpha and ribavirin is reasonably successful in treating majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of a series of ketoamide derived P(1)-P(3) macrocyclic inhibitors that are more potent than the first generation clinical candidate, boceprevir (1, Sch 503034), is discussed. The optimization of these macrocyclic inhibitors identified a P(3) imide capped analogue 52 that was 20 times more potent than 1 and demonstrated good oral pharmacokinetics in rats. X-ray structure of 52 bound to NS3 protease and biological data are also discussed.


Subject(s)
Amides/pharmacology , Drug Discovery , Macrocyclic Compounds/pharmacology , Protease Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Amides/chemistry , Crystallography, X-Ray , Hydrogen Bonding , Macrocyclic Compounds/chemistry , Magnetic Resonance Spectroscopy , Models, Molecular , Protease Inhibitors/chemistry , Spectrometry, Mass, Electrospray Ionization , Structure-Activity Relationship
11.
J Biomol Screen ; 13(5): 406-14, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18480474

ABSTRACT

Small-molecule inhibitors of HIV integrase (HIV IN) have emerged as a promising new class of antivirals for the treatment of HIV/AIDS. The compounds currently approved or in clinical development specifically target HIV DNA integration and were identified using strand-transfer assays targeting the HIV IN/viral DNA complex. The authors have developed a second biochemical assay for identification of HIV integrase inhibitors, targeting the interaction between HIV IN and the cellular cofactor LEDGF/p75. They developed a luminescent proximity assay (AlphaScreen) designed to measure the association of the 80-amino-acid integrase binding domain of LEDGF/p75 with the 163-amino-acid catalytic core domain of HIV IN. This assay proved to be quite robust (with a Z' factor of 0.84 in screening libraries arrayed as orthogonal mixtures) and successfully identified several compounds specific for this protein-protein interaction.


Subject(s)
HIV Integrase Inhibitors/isolation & purification , HIV Integrase Inhibitors/pharmacology , HIV Integrase/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Base Sequence , DNA Primers , Drug Evaluation, Preclinical , HIV Integrase/metabolism , Humans
12.
J Synchrotron Radiat ; 15(Pt 3): 204-7, 2008 May.
Article in English | MEDLINE | ID: mdl-18421139

ABSTRACT

The structures of both native and S139A holo-HCV NS3/4A protease domain were solved to high resolution. Subsequently, structures were determined for a series of ketoamide inhibitors in complex with the protease. The changes in the inhibitor potency were correlated with changes in the buried surface area upon binding the inhibitor to the active site. The largest contributions to the binding energy arise from the hydrophobic interactions of the P1 and P2 groups as they bind to the S1 and S2 pockets. This correlation of the changes in potency with increased buried surface area contributed directly to the design of a potent tripeptide inhibitor of the HCV NS3/4A protease, which is currently in clinical trials.


Subject(s)
Hepacivirus/enzymology , Proline/analogs & derivatives , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Models, Molecular , Molecular Structure , Proline/chemistry
13.
Antiviral Res ; 77(3): 177-85, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18201776

ABSTRACT

An issue of clinical importance in the development of new antivirals for HCV is emergence of resistance. Several resistance loci to ketoamide inhibitors of the NS3/4A protease have been identified (residues V36, T54, R155, A156, and V170) by replicon and clinical studies. Using SCH 567312, a more potent protease inhibitor derived from SCH 503034 (boceprevir) series, we identified two new positions (Q41 and F43) that confer resistance to the ketoamide class. The catalytic efficiency of protease enzymes was not affected by most resistance mutations, whereas replicon fitness varied with specific mutations. SCH 503034 and another ketoamide inhibitor, VX-950 (telaprevir), showed moderate losses of activity against most resistance mutations (< or =10-fold); the highest resistance level was conferred by mutations at A156 locus. Although SCH 503034 and VX-950 bind similarly to the active site, differences in resistance level were observed with specific mutations. Changes at V36 and R155 had more severe impact on VX-950, whereas mutations at Q41, F43 and V170 conferred higher resistance to SCH 503034. Structural analysis of resistance mutations on inhibitor binding is discussed.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Hepacivirus/drug effects , Hepacivirus/genetics , Mutation, Missense , Protease Inhibitors/pharmacology , Carrier Proteins/metabolism , Hepacivirus/physiology , Humans , Intracellular Signaling Peptides and Proteins , Models, Molecular , Molecular Structure , Oligopeptides/pharmacology , Proline/analogs & derivatives , Proline/pharmacology , Protease Inhibitors/chemistry , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism , Viral Proteins/metabolism , Virus Replication/physiology
14.
Org Lett ; 9(16): 3061-4, 2007 Aug 02.
Article in English | MEDLINE | ID: mdl-17608487

ABSTRACT

An efficient synthetic approach for the preparation of macrocyclic peptidomimetics for inhibition of HCV NS3 is presented. The macrocyclic core is built using ring-closing metathesis (RCM) of a tripeptidic diene. The presented approach allows the introduction of heteroatoms in strategic places along the macrocyclic ring. The methyl ester moiety in the RCM products was synthetically manipulated to install a keto-amide moiety via a Passerini reaction.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Hepacivirus/enzymology , Peptides/chemistry , Pyrroles/chemical synthesis , Catalysis , Cyclization , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Molecular Mimicry , Molecular Structure , Pyrroles/chemistry , Pyrroles/pharmacology
15.
J Med Chem ; 50(10): 2310-8, 2007 May 17.
Article in English | MEDLINE | ID: mdl-17444623

ABSTRACT

The structures of both the native holo-HCV NS3/4A protease domain and the protease domain with a serine 139 to alanine (S139A) mutation were solved to high resolution. Subsequently, structures were determined for a series of ketoamide inhibitors in complex with the protease. The changes in the inhibitor potency were correlated with changes in the buried surface area upon binding the inhibitor to the active site. The largest contribution to the binding energy arises from the hydrophobic interactions of the P1 and P2 groups as they bind to the S1 and S2 pockets [the numbering of the subsites is as defined in Berger, A.; Schechter, I. Philos. Trans. R. Soc. London, Ser. B 1970, 257, 249-264]. This correlation of the changes in potency with increased buried surface area contributed directly to the design of a potent tripeptide inhibitor of the HCV NS3/4A protease that is currently in clinical trials.


Subject(s)
Antiviral Agents/chemical synthesis , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/chemistry , Hepacivirus/enzymology , Proline/analogs & derivatives , Serine Proteinase Inhibitors/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry , Viral Proteins/antagonists & inhibitors , Viral Proteins/chemistry , Antiviral Agents/chemistry , Binding Sites , Crystallography, X-Ray , Intracellular Signaling Peptides and Proteins , Models, Molecular , Proline/chemical synthesis , Proline/chemistry , Protein Conformation , Stereoisomerism , Structure-Activity Relationship
16.
J Antimicrob Chemother ; 59(1): 51-8, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17151003

ABSTRACT

BACKGROUND: Current hepatitis C virus (HCV) therapies may cure approximately 60% of infections. They are often contraindicated or poorly tolerated, underscoring the need for safer and more effective drugs. A novel, alpha-ketoamide-derived, substrate-based inhibitor of the HCV serine protease (SCH446211) was developed. Compared with earlier reported inhibitors of similar chemical class, it has a P1'-P2' extension which provides extended interaction with the protease active site. The aim of this study was to evaluate the in vitro antiviral activity of SCH446211. METHODS: Binding constant of SCH446211 to HCV NS3 protease was measured with the chromogenic substrate in vitro cleavage assay. Cell-based activity of SCH446211 was evaluated in replicon cells, which are Huh-7 hepatoma cells stably transfected with a subgenomic HCV RNA as reported previously. After 72 h of incubation with SCH446211, viral transcription and protein expression were measured by real-time RT-PCR (TaqMan), quantitative in situ hybridization, immunoblot and indirect immunofluorescence. RESULTS: The binding constant of SCH446211 to HCV NS3 protease was 3.8 +/- 0.4 nM. HCV replication and protein expression were inhibited by SCH446211 in replicon cells as consistently shown by four techniques. In particular, based on quantitative real-time RT-PCR measurements, the IC50 and IC90 of SCH446211 were estimated to be 40 +/- 20 and 100 +/- 20 nM (n = 17), respectively. Long-term culture of replicon cells with SCH446211 reduced replicon RNA to <0.1 copy per cell. SCH446211 did not show cellular toxicity at concentrations up to 50 microM. CONCLUSIONS: SCH446211 is a potent inhibitor of HCV protease in vitro. Its extended interaction with the HCV NS3 protease active site is associated with potent in vitro antiviral activity. This observation is potentially a useful guide for development of future potent inhibitors against HCV NS3 protease.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Oligopeptides/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , Hepacivirus/genetics , RNA, Viral/analysis , Replicon
17.
J Med Chem ; 49(20): 6074-86, 2006 Oct 05.
Article in English | MEDLINE | ID: mdl-17004721

ABSTRACT

Hepatitis C virus (HCV) infection is the major cause of chronic liver disease, leading to cirrhosis and hepatocellular carcinoma, which affects more than 170 million people worldwide. Currently the only therapeutic regimens are subcutaneous interferon-alpha or polyethylene glycol (PEG)-interferon-alpha alone or in combination with oral ribavirin. Although combination therapy is reasonably successful with the majority of genotypes, its efficacy against the predominant genotype (genotype 1) is moderate at best, with only about 40% of the patients showing sustained virological response. Herein, the SAR leading to the discovery of 70 (SCH 503034), a novel, potent, selective, orally bioavailable NS3 protease inhibitor that has been advanced to clinical trials in human beings for the treatment of hepatitis C viral infections is described. X-ray structure of inhibitor 70 complexed with the NS3 protease and biological data are also discussed.


Subject(s)
Antiviral Agents/chemical synthesis , Hepacivirus/enzymology , Proline/analogs & derivatives , Viral Nonstructural Proteins/antagonists & inhibitors , Administration, Oral , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Area Under Curve , Binding Sites , Biological Availability , Crystallography, X-Ray , Dogs , Haplorhini , Molecular Structure , Proline/chemical synthesis , Proline/chemistry , Proline/pharmacokinetics , Rats , Structure-Activity Relationship , Tissue Distribution , Viral Nonstructural Proteins/chemistry
18.
Bioorg Med Chem Lett ; 16(15): 3960-5, 2006 Aug 01.
Article in English | MEDLINE | ID: mdl-16730985

ABSTRACT

Synthesis and HCV NS3 serine protease inhibitory activity of 4-hydroxyproline derived macrocyclic inhibitors and SAR around this macrocyclic core is described in this communication. X-ray structure of inhibitor 38 bound to the protease is discussed.


Subject(s)
Hepatitis C/enzymology , Macrocyclic Compounds/pharmacology , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/antagonists & inhibitors , X-Ray Diffraction
19.
J Med Chem ; 49(9): 2750-7, 2006 May 04.
Article in English | MEDLINE | ID: mdl-16640336

ABSTRACT

Introduction of various modified prolines at P(2) and optimization of the P(1) side chain led to the discovery of SCH6 (24, Table 2), a potent ketoamide inhibitor of the HCV NS3 serine protease. In addition to excellent enzyme potency (K(i)*= 3.8 nM), 24 was also found to be a potent inhibitor of HCV subgenomic RNA replication with IC(50) and IC(90) of 40 and 100 nM, respectively. Recently, antiviral activity of 24 was demonstrated with inhibition of the full-length genotype 2a HCV genome. In addition, 24 was found to restore the responsiveness of the interferon regulatory factor 3 (IRF-3) in cells containing HCV RNA replicons.


Subject(s)
Amides/chemistry , Amides/pharmacology , Genome, Viral/genetics , Hepacivirus/drug effects , Oligopeptides/chemistry , Oligopeptides/pharmacology , Serine Endopeptidases/metabolism , Animals , Haplorhini , Hepacivirus/enzymology , Hepacivirus/genetics , Models, Molecular , Molecular Structure , RNA, Viral/genetics , Rats , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/metabolism
20.
J Med Chem ; 49(3): 995-1005, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451065

ABSTRACT

The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the backbone Ala156 residue and the S4 pocket. Thus, a number of P2 proline-based macrocyclic alpha-ketoamide inhibitors were prepared and investigated in an HCV NS3 serine protease continuous assay (K(i*)). The biological activity varied substantially depending on factors such as the ring size, number of amino acid residues, number of methyl substituents, type of heteroatom in the linker, P3 residue, and configuration at the proline C-4 center. The pentapeptide inhibitors were very potent, with the C-terminal acids and amides being the most active ones (24, K(i*) = 8 nM). The tetrapeptides and tripeptides were less potent. Sixteen- and seventeen-membered macrocyclic compounds were equally potent, while fifteen-membered analogues were slightly less active. gem-Dimethyl substituents at the linker improved the potency of all inhibitors (the best compound was 45, K(i*) = 6 nM). The combination of tert-leucine at P3 and dimethyl substituents at the linker in compound 47 realized a selectivity of 307 against human neutrophil elastase. Compound 45 had an IC(50) of 130 nM in a cellular replicon assay, while IC(50) for 24 was 400 nM. Several compounds had excellent subcutaneous AUC and bioavailability in rats. Although tripeptide compound 40 was 97% orally bioavailable, larger pentapeptides generally had low oral bioavailability. The X-ray crystal structure of compounds 24 and 45 bound to the protease demonstrated the close interaction of the macrocycle with the Ala156 methyl group and S4 pocket. The strategy of macrocyclization has been proved to be successful in improving potency (>20-fold greater than that of 1) and in structural depeptization.


Subject(s)
Antiviral Agents/chemical synthesis , Macrocyclic Compounds/chemical synthesis , Proline/analogs & derivatives , Proline/chemical synthesis , Serine Proteinase Inhibitors/chemical synthesis , Viral Nonstructural Proteins/antagonists & inhibitors , Antiviral Agents/pharmacology , Biological Availability , Crystallography, X-Ray , Cyclization , Hepacivirus/drug effects , Humans , Leukocyte Elastase/antagonists & inhibitors , Macrocyclic Compounds/pharmacology , Models, Molecular , Oligopeptides/chemical synthesis , Oligopeptides/pharmacology , Proline/pharmacology , Serine Endopeptidases/chemistry , Serine Proteinase Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship , Viral Nonstructural Proteins/chemistry , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...