Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Sci Food ; 7(1): 43, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37612428

ABSTRACT

The prevalence of hypersensitivities towards wheat has increased in the last decades. Apart from celiac disease these include allergic and other inflammatory reactions summarized under the term non-celiac wheat sensitivity. One suspected trigger is the family of amylase/trypsin-inhibitors (ATIs), non-gluten proteins that are prominent wheat allergens and that activate the toll-like receptor 4 on intestinal immune cells to promote intestinal and extra-intestinal inflammation. We therefore quantified 13 ATIs in 60 German hexaploid winter wheat cultivars originating from 1891 to 2010 and harvested in three years by targeted liquid chromatography-tandem mass spectrometry combined with stable isotope dilution assay using specific marker peptides as internal standards. The total ATI content and that of the two major ATIs 0.19 and CM3 did not change from old cultivars (first registered from 1891 to 1950) to modern cultivars (1951-2010). There were also no significant changes in ATI distribution.

2.
Nutrients ; 14(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296938

ABSTRACT

In non-celiac gluten sensitivity (NCGS), the elimination of wheat results in a clear symptom improvement, but gluten has still not been proven as (the sole) trigger. Due to the increase in the prevalence of gluten-related diseases, the breeding of high-performance wheat cultivars is discussed as a trigger. To analyze the immune stimulation and signal pathways, the immune cells of healthy subjects and patients with NCGS were stimulated with gliadins from wheat, and the expression and secretion of interleukin 1ß (IL1ß) and interleukin 6 (IL6) were studied. To determine the impact of wheat breeding, the monocyte cell line THP1 and human immune cells were stimulated with gliadin, glutenin, and albumin/globulin fractions of ancient and modern cereals, and expression of inflammatory molecules was checked. Immune cells of patients with NCGS showed an increased expression of IL1ß and IL6 after stimulation with gliadins compared to immune cells of healthy controls. Gliadins caused a strong activation of P-STAT3 in immune cells of healthy controls, and inhibitors of JAK and NFκB pathways considerably reduced this response. In addition to gliadins, we further showed that glutenins and albumin/globulins from all wheat cultivars from the last century, and especially from einkorn and spelt, also markedly induced the expression of inflammatory genes in THP1 and human immune cells. There was no correlation between enhanced immune stimulation and ancient or modern cultivars. This does not support the hypothesis that modern wheat breeding is responsible for the increase in gluten-related diseases. An altered immune situation is suggested in patients with NCGS.


Subject(s)
Celiac Disease , Glutens , Plant Proteins , Triticum , Humans , Albumins/chemistry , Celiac Disease/diagnosis , Gliadin/chemistry , Globulins/chemistry , Glutens/chemistry , Interleukin-6 , Plant Breeding , Plant Proteins/chemistry
3.
Food Chem ; 339: 127952, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33152854

ABSTRACT

One potential explanation for the increasing prevalence of celiac disease (CD) over the past decades is that breeding may have inadvertently changed the immunoreactive potential of wheat. To test this hypothesis, we quantitated four CD-active peptides, namely the 33-mer and peptides containing the DQ2.5-glia-α1a/DQ2.5-glia-α2 (P1), DQ2.5-glia-α3 (P2) and DQ2.5-glia-γ1 (P3) epitopes, in a set of 60 German hexaploid winter wheat cultivars from 1891 to 2010 and grown in three consecutive years. The contents of CD-active peptides were affected more by the harvest year than by the cultivar. The 33-mer and P1 peptides showed no tendency regarding their absolute contents in the flour, but they tended to increase slightly over time when calculated relative to the α-gliadins. No trends in relative or absolute values were observed for the P2 and P3 peptides derived from α- and γ-gliadins. Therefore, the immunoreactive potential of old and modern wheat cultivars appears to be similar.


Subject(s)
Celiac Disease/immunology , Triticum/immunology , Flour , Gliadin/immunology , Humans
4.
J Agric Food Chem ; 68(46): 13247-13256, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-32648759

ABSTRACT

Epidemiologic studies suggest an increasing prevalence of celiac disease and non-celiac gluten/wheat sensitivity. With wheat proteins being the main triggers, changes in wheat protein composition are discussed as a potential cause. The goals of breeding toward increased yield and resistance might have inadvertently contributed to a higher immunostimulatory potential of modern wheat cultivars compared to old wheat cultivars. Therefore, agronomic characteristics, protein content, and gluten composition of 60 German winter wheat cultivars first registered between 1891 and 2010 grown in 3 years were analyzed. While plant height and spike density decreased over time, yield and harvest index increased. The protein and gliadin contents showed a decreasing trend, whereas glutenin contents increased, but there were no changes in albumin/globulin and gluten contents. Overall, the harvest year had a more significant effect on protein composition than the cultivar. At the protein level, we found no evidence to support an increased immunostimulatory potential of modern winter wheat.


Subject(s)
Gliadin/analysis , Glutens/analysis , Plant Proteins/analysis , Triticum/chemistry , Gliadin/metabolism , Glutens/metabolism , History, 19th Century , History, 20th Century , History, 21st Century , Plant Breeding/history , Plant Proteins/metabolism , Triticum/genetics , Triticum/metabolism
5.
J Agric Food Chem ; 67(38): 10726-10733, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31469953

ABSTRACT

A turn-on fluorescent probe, HOCD-RB, for monitoring singlet oxygen (1O2) was developed by linking rhodamine B as fluorophore with dimethylhomoocoerdianthrone (HOCD) as 1O2 reaction site and fluorescence quencher due to the intramolecular energy transfer (ET) between rhodamine B and HOCD moieties. Upon exposure to 1O2 it rapidly forms endoperoxide with HOCD and turns on the fluorescence of rhodamine B by 18-fold. Taking advantage of the HOCD-RB probe that shows fast response, high sensitivity, and selectivity for 1O2, it is applied for imaging of endogenous 1O2 in living cells and the fluorometric assay for evaluating 1O2 quenching activity of selected common flavonoids found in our daily diets. The results show that the 1O2 scavenging activity of flavonoids depends on not only the structure of individual flavonoid but also the competitive interactions between mixed flavonoids. The best antioxidant capacity for individual and mixed flavonoids is epigallocatechin gallate and the mixture of catechin gallate with kaempferol, respectively. Overall, this work provided a new tool for detection and imaging of singlet oxygen activity in a biological system as well as an efficient fluorometric assay of 1O2 scavenging activity.


Subject(s)
Flavonoids/chemistry , Fluorescent Dyes/chemistry , Fluorometry/methods , Free Radical Scavengers/chemistry , Rhodamines/chemistry , Singlet Oxygen/chemistry , Fluorescence , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...