Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Opt Lett ; 49(10): 2717-2720, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748144

ABSTRACT

We report an amplification-free thin-disk laser system delivering 0.9 GW peak power. The 120 fs pulses, at 14 MHz, centered around 1 µm, containing 12.8 µJ delivered by a thin-disk oscillator, were compressed by factor 15 down to 8.0 fs with 148 W average output power and overall 82% efficiency. Additionally, we showed that even a sub-two-cycle operation with 6.2 fs can be reached with this technology. The system will be a crucial part of the XUV frequency comb being developed and a unique high-repetition rate driver for attosecond pulse generation.

2.
Opt Lett ; 48(23): 6220-6223, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38039231

ABSTRACT

We report a new, to the best of our knowledge, approach to phase matching of nonlinear materials based on the free-space multipass cells. This technique is applicable to noncentrosymmetric nonlinear crystals, including crystals that cannot be birefringent phase-matched or quasi-phase matched by periodic poling. Notably, by using this approach, the crystalline quartz is quasi-phase matched with the demonstrated increase of the second harmonic generation efficiency by a factor of 40. The method can be extended toward UV and THz ranges. This promises to revolutionize experimental nonlinear optics and all applications by increasing the number of available crystals for quasi-phase matching by at least one order of magnitude and brings fresh motivation for developing novel nonlinear materials.

3.
Opt Express ; 31(16): 25970-25977, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710469

ABSTRACT

A compact Kerr-lens mode-locked thin-disk oscillator reproducibly delivering 110 MW output peak power, the highest among all oscillators, is reported. This simple and stable femtosecond oscillator delivering a unique combination of high average power (202 W) and peak power, is an ideal driver and an important milestone for the development of extreme ultraviolet transportable frequency comb sources.

4.
Opt Express ; 31(12): 19554-19568, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381368

ABSTRACT

Since its first demonstration in 2016, the multi-pass spectral broadening technique has covered impressive ranges of pulse energy (3 µJ - 100 mJ) and peak power (4 MW - 100 GW). Energy scaling of this technique into the joule-level is currently limited by phenomena such as optical damage, gas ionization and spatio-spectral beam inhomogeneity. These limitations can be overcome by the novel multi-pass convex-concave arrangement, which exhibits crucial properties such as large mode size and compactness. In a proof-of-principle experiment, 260 fs, 15 µJ and 200 µJ pulses are broadened and subsequently compressed to approximately 50 fs with 90% efficiency and excellent spatio-spectral homogeneity across the beam profile. We simulate the proposed concept for spectral broadening of 40 mJ and 1.3 ps input pulses and discuss the possibility of further scaling.

5.
Opt Lett ; 48(1): 147-150, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36563390

ABSTRACT

We report supercontinuum generation and pulse compression in two stacked multipass cells based on dielectric mirrors. The 230 fs pulses at 1 MHz containing 12 µJ are compressed by a factor of 33 down to 7 fs, corresponding to 1.0 GW peak power and overall transmission of 84%. The source is particularly interesting for such applications as time-resolved angle-resolved photoemission spectroscopy (ARPES), photoemission electron microscopy, and nonlinear spectroscopy.

6.
Nat Commun ; 13(1): 2584, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35545615

ABSTRACT

Dual-comb spectroscopy (DCS) normally operates with two independent, relatively low power and actively synchronized laser sources. This hinders the wide adoption for practical implementations and frequency conversion into deep UV and VUV spectral ranges. Here, we report a fully passive, high power dual-comb laser based on thin-disk technology and its application to direct frequency comb spectroscopy. The peak power (1.2 MW) and the average power (15 W) of our Yb:YAG thin-disk dual-comb system are more than one-order-of-magnitude higher than in any previous systems. The scheme allows easy adjustment of the repetition frequency difference during operation. Both combs share all cavity components which leads to an excellent mutual stability. A time-domain signal recorded over 10 ms without any active stabilization was sufficient to resolve individual comb lines after Fourier transformation.

7.
Light Sci Appl ; 11(1): 151, 2022 May 23.
Article in English | MEDLINE | ID: mdl-35606348

ABSTRACT

Intense phase-locked terahertz (THz) pulses are the bedrock of THz lightwave electronics, where the carrier field creates a transient bias to control electrons on sub-cycle time scales. Key applications such as THz scanning tunnelling microscopy or electronic devices operating at optical clock rates call for ultimately short, almost unipolar waveforms, at megahertz (MHz) repetition rates. Here, we present a flexible and scalable scheme for the generation of strong phase-locked THz pulses based on shift currents in type-II-aligned epitaxial semiconductor heterostructures. The measured THz waveforms exhibit only 0.45 optical cycles at their centre frequency within the full width at half maximum of the intensity envelope, peak fields above 1.1 kV cm-1 and spectral components up to the mid-infrared, at a repetition rate of 4 MHz. The only positive half-cycle of this waveform exceeds all negative half-cycles by almost four times, which is unexpected from shift currents alone. Our detailed analysis reveals that local charging dynamics induces the pronounced positive THz-emission peak as electrons and holes approach charge neutrality after separation by the optical pump pulse, also enabling ultrabroadband operation. Our unipolar emitters mark a milestone for flexibly scalable, next-generation high-repetition-rate sources of intense and strongly asymmetric electric field transients.

8.
Opt Lett ; 47(5): 1246-1249, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35230338

ABSTRACT

Multipass spectral broadening and compression around 515 nm are experimentally demonstrated. A nonlinear multipass cell with a bulk medium is used to compress 250-fs pulses down to 38 fs. The same input pulses create a sufficient bandwidth for sub-20-fs pulse generation in a multipass cell with gaseous media. In both cases, the efficiency exceeds 85%. Dispersion management by reduction of the cell size and the thickness of the nonlinear medium allows an efficient generation of ultrashort pulses in the visible range and establishes a pathway for ultraviolet spectral broadening by means of multipass cells.

9.
Nature ; 577(7788): 52-59, 2020 01.
Article in English | MEDLINE | ID: mdl-31894146

ABSTRACT

The proper functioning of living systems and physiological phenotypes depends on molecular composition. Yet simultaneous quantitative detection of a wide variety of molecules remains a challenge1-8. Here we show how broadband optical coherence opens up opportunities for fingerprinting complex molecular ensembles in their natural environment. Vibrationally excited molecules emit a coherent electric field following few-cycle infrared laser excitation9-12, and this field is specific to the sample's molecular composition. Employing electro-optic sampling10,12-15, we directly measure this global molecular fingerprint down to field strengths 107 times weaker than that of the excitation. This enables transillumination of intact living systems with thicknesses of the order of 0.1 millimetres, permitting broadband infrared spectroscopic probing of human cells and plant leaves. In a proof-of-concept analysis of human blood serum, temporal isolation of the infrared electric-field fingerprint from its excitation along with its sampling with attosecond timing precision results in detection sensitivity of submicrograms per millilitre of blood serum and a detectable dynamic range of molecular concentration exceeding 105. This technique promises improved molecular sensitivity and molecular coverage for probing complex, real-world biological and medical settings.


Subject(s)
Biomarkers/blood , Blood Chemical Analysis/methods , Serum/chemistry , Spectrophotometry, Infrared , Biomarkers/chemistry , Blood Chemical Analysis/instrumentation , Humans , Sensitivity and Specificity , Water/chemistry
10.
Opt Express ; 27(17): 24445-24454, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31510333

ABSTRACT

Lasers based on Cr2+-doped II-VI material, often known as the Ti:Sapphire of the mid-infrared, can directly provide few-cycle pulses with octave-spanning spectra, and serve as efficient drivers for generating broadband mid-infrared radiation. It is expected that the wider adoption of this technology benefits from more compact and cost-effective embodiments. Here, we report the first directly diode-pumped, Kerr-lens mode-locked Cr2+-doped II-VI oscillator pumped by a single InP diode, providing average powers over 500 mW and pulse durations of 45 fs - shorter than six optical cycles at 2.4 µm. These correspond to a sixty-fold increase in peak power compared to the previous diode-pumped record, and are at similar levels with respect to more mature fiber-pumped oscillators. The diode-pumped femtosecond oscillator presented here constitutes a key step toward a more accessible alternative to synchrotron-like infrared radiation and is expected to accelerate research in laser spectroscopy and ultrafast infrared optics.

11.
Opt Lett ; 44(17): 4227-4230, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31465368

ABSTRACT

Several approaches to power scaling of mode-locked thin-disk oscillators exist. One of these approaches is based on the increased gain provided by multiple passes through the thin-disk laser medium. For the first time, to the best of our knowledge, we applied this approach to a Kerr-lens mode-locked thin-disk oscillator. The so obtained additional gain allowed mode-locked operation with up to 50% output coupling rate. This first demonstration is of particular importance for gain media with inherently low-emission cross sections and paves the way to even more powerful Kerr-lens mode-locked thin-disk oscillators. Moreover, the experimental results indicate an increased self-amplitude modulation related to an overall increase in the soft-aperture Kerr-lens effect.

12.
Opt Lett ; 44(12): 2986-2989, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31199362

ABSTRACT

We present a mid-infrared (MIR) source based on intra-pulse difference-frequency generation under the random quasi-phase-matching condition. The scheme enables the use of non-birefringent materials whose crystal orientations are not perfectly and periodically poled, widening the choice of media for nonlinear frequency conversion. With a 2 µm driving source based on a Ho:YAG thin-disk laser, together with a polycrystalline ZnSe element, an octave-spanning MIR continuum (2.7-20 µm) was generated. At over 20 mW, the average power is comparable to regular phase-matching in birefringent crystals. A 1 µm laser system based on a Yb:YAG thin-disk laser was also tested as a driving source in this scheme. The new approach provides a simplified way for generating coherent MIR radiation with an ultrabroad bandwidth at reasonable efficiency.

13.
Opt Lett ; 44(10): 2390-2393, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31090689

ABSTRACT

Femtosecond light sources in the 3-5 µm region are highly sought after for numerous applications. While they can be generated by using nonlinear effects in optical fibers, the efficiencies and effectiveness of frequency conversion can be significantly enhanced by using ultrashort driving pulses. Here, we report on a few-cycle Cr:ZnS oscillator driving low-order soliton dynamics in soft-glass fibers. By selecting appropriate parameters, sub-two-cycle pulses or broad supercontinua spanning over 1.7 octaves from 1.6 to 5.1 µm can be generated at average power levels exceeding 300 mW. In the same setting, Raman-induced soliton self-frequency shifting has been exploited to generate sub-100-fs pulses continuously tunable from 2.3 to 3.85 µm with a conversion efficiency of ∼50%. These results demonstrate the vast potential of using Cr:ZnS or Cr:ZnSe lasers for powerful mid-infrared generation.

14.
Opt Lett ; 44(10): 2566-2569, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31090733

ABSTRACT

A myriad of existing and emerging applications could benefit from coherent and broadband mid-infrared (MIR) light. Yet, existing tabletop sources are often complex or sensitive to interferometric optical misalignment. Here we demonstrate a significantly simplified scheme of broadband MIR generation by cascading the intra-pulse difference-frequency generation process in a specific nonlinear crystal. This allows pulses generated directly from mode-locked lasers to be used without further nonlinear temporal compression. The system, together with the driving beam, can provide an ultra-broadband coherent radiation coverage ranging from 2 to 17 µm with femtosecond pulse durations. To the best of our knowledge, this is the first demonstration of cascaded DFG in the MIR range, which brings emerging time-domain spectroscopic techniques closer to real-world applications.

15.
Opt Express ; 27(1): 55-62, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30645358

ABSTRACT

Dispersive mirrors operating in a broadband infrared spectral range are reported for the first time. The mirrors are based on Si/SiO2 thin-film materials. The coatings exhibit reflectance exceeding 99.6% in the spectral range from 2 to 3.2 µm and provide a group delay dispersion of -100 fs2 and -200 fs2 in this range. The fabricated mirrors are expected to be key elements of Cr:ZnS/Cr:ZnSe femtosecond lasers and amplifiers. The mirrors open a new avenue in the development of ultrafast dispersive optics operating in the infrared spectral range.

16.
Opt Lett ; 43(19): 4643-4646, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30272703

ABSTRACT

In this work, we present a nonlinear spectral broadening and compression scheme based on self-phase modulation in bulk media inside a Herriott-type multipass cell. With this reliable approach, we achieved a spectral broadening factor of 22 while maintaining an efficiency of over 60% at an average input power of 100 W, and an excellent output beam quality with M2=1.2. The output pulses were compressed to 18 fs, with the broadest spectrum supporting a Fourier-transform limit of 10 fs. The high efficiency and approximately four-optical-cycle pulse duration mark an important milestone towards the realization of a compact, high power oscillator-based driver for XUV frequency combs and other nonlinear processes.

17.
Sci Adv ; 4(4): eaaq1526, 2018 04.
Article in English | MEDLINE | ID: mdl-29713685

ABSTRACT

Spectroscopy in the wavelength range from 2 to 11 µm (900 to 5000 cm-1) implies a multitude of applications in fundamental physics, chemistry, as well as environmental and life sciences. The related vibrational transitions, which all infrared-active small molecules, the most common functional groups, as well as biomolecules like proteins, lipids, nucleic acids, and carbohydrates exhibit, reveal information about molecular structure and composition. However, light sources and detectors in the mid-infrared have been inferior to those in the visible or near-infrared, in terms of power, bandwidth, and sensitivity, severely limiting the performance of infrared experimental techniques. This article demonstrates the generation of femtosecond radiation with up to 5 W at 4.1 µm and 1.3 W at 8.5 µm, corresponding to an order-of-magnitude average power increase for ultrafast light sources operating at wavelengths longer than 5 µm. The presented concept is based on power-scalable near-infrared lasers emitting at a wavelength near 1 µm, which pump optical parametric amplifiers. In addition, both wavelength tunability and supercontinuum generation are reported, resulting in spectral coverage from 1.6 to 10.2 µm with power densities exceeding state-of-the-art synchrotron sources over the entire range. The flexible frequency conversion scheme is highly attractive for both up-conversion and frequency comb spectroscopy, as well as for a variety of time-domain applications.

18.
Light Sci Appl ; 7: 17180, 2018.
Article in English | MEDLINE | ID: mdl-30839530

ABSTRACT

The demand for and usage of broadband coherent mid-infrared sources, such as those provided by synchrotron facilities, are growing. Since most organic molecules exhibit characteristic vibrational modes in the wavelength range between 500 and 4000 cm-1, such broadband coherent sources enable micro- or even nano-spectroscopic applications at or below the diffraction limit with a high signal-to-noise ratio1, 2, 3. These techniques have been applied in diverse fields ranging from life sciences, material analysis, and time-resolved spectroscopy. Here we demonstrate a broadband, coherent and intrinsically carrier-envelope-phase-stable source with a spectrum spanning from 500 to 2250 cm-1 (-30 dB) at an average power of 24 mW and a repetition rate of 77 MHz. This performance is enabled by the first mode-locked thin-disk oscillator operating at 2 µm wavelength, providing a tenfold increase in average power over femtosecond oscillators previously demonstrated in this wavelength range4. Multi-octave spectral coverage from this compact and power-scalable system opens up a range of time- and frequency-domain spectroscopic applications.

19.
Opt Express ; 25(19): 22499-22509, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-29041559

ABSTRACT

Excess relative intensity noise (RIN) constitutes one of the major limitations of most spectroscopic methods involving lasers. Here, we present an active RIN suppression scheme for a coherent mid-infrared (MIR) light source (8.4-11 µm), based on intra-pulse difference frequency generation (DFG). Three different stabilization concepts that rely on modulating the intensity of the driving near-infrared (NIR) pulse train with an acousto-optic modulator are investigated and compared. By using the wings of the NIR spectrum to generate the error signal, a RIN suppression of the MIR pulse train of up to a factor of 20 was achieved in the band between 1 Hz and 100 kHz, resulting in a total integrated RIN of 0.07%.

20.
Opt Express ; 25(9): 10234-10240, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28468397

ABSTRACT

We report a challenging design, fabrication and post-production characterization problem of a dispersive mirror supporting the spectral range from 2000 nm to 2200 nm and providing a group delay dispersion of -1000 fs2. The absolute reflectance in the working range is over 99.95%. The reported mirror is a critical element for Tm and Ho based lasers and paves the way for the development of ultrafast 2 µm lasers with sub-100 fs pulse duration.

SELECTION OF CITATIONS
SEARCH DETAIL
...