Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(27): e2312131, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38632702

ABSTRACT

Room temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr3) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr3 single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method. Through the implementation of microplatelets geometry, enhanced optical properties and performance are achieved due to the presence of sharp edges and a uniform surface, effectively avoiding non-radiative scattering losses caused by defects. This allows not only to observe strong light matter coupling and formation of whispering gallery polaritons, but also to demonstrate the onset of polariton condensation at RT. This investigation not only contributes to the advancement of the knowledge concerning the exceptional optical properties of perovskite-based polariton systems, but also unveils prospects for the exploration of WGM polariton condensation within the framework of a 3D perovskite-based platform, working at RT. The unique characteristics of polariton condensate, including low excitation thresholds and ultrafast dynamics, open up unique opportunities for advancements in photonics and optoelectronics devices.

3.
Nat Nanotechnol ; 16(12): 1349-1354, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34675412

ABSTRACT

The engineering of the energy dispersion of polaritons in microcavities through nanofabrication or through the exploitation of intrinsic material and cavity anisotropies has demonstrated many intriguing effects related to topology and emergent gauge fields such as the anomalous quantum Hall and Rashba effects. Here we show how we can obtain different Berry curvature distributions of polariton bands in a strongly coupled organic-inorganic two-dimensional perovskite single-crystal microcavity. The spatial anisotropy of the perovskite crystal combined with photonic spin-orbit coupling produce two Hamilton diabolical points in the dispersion. An external magnetic field breaks time-reversal symmetry owing to the exciton Zeeman splitting and lifts the degeneracy of the diabolical points. As a result, the bands possess non-zero integral Berry curvatures, which we directly measure by state tomography. In addition to the determination of the different Berry curvatures of the multimode microcavity dispersions, we can also modify the Berry curvature distribution, the so-called band geometry, within each band by tuning external parameters, such as temperature, magnetic field and sample thickness.

4.
ACS Omega ; 4(1): 2009-2018, 2019 Jan 31.
Article in English | MEDLINE | ID: mdl-31459452

ABSTRACT

By pursuing the strategy of manipulating natural compounds to obtain functional materials, in this work, we report on the synthesis and characterization of a luminescent cationic iridium complex (cis-1), designed starting from the catecholic neurotransmitter dopamine, exhibiting the unusual cis arrangement of the C∧N ligands. Through an integrated experimental and theoretical approach, it was possible to delineate the optoelectronic properties of cis-1. In detail, (a) a series of absorption maxima in the range 300-400 nm was assigned to metal-to-ligand charge transfer and weak and broad absorption maxima at longer wavelengths (400-500 nm) were ascribable to spin-forbidden transitions with a mixed character; (b) there was an intense red phosphorescence with emission set in the range 580-710 nm; and (c) a highest occupied molecular orbital was mainly localized on the metal and the 2-phenylpiridine ligand and a lowest unoccupied molecular orbital was localized on the N∧N ligand, with a ΔH-L set at 2.20 eV. This investigation allowed the design of light-emitting electrochemical cell (LEEC) devices endowed with good performance. The poor literature reporting on the use of cis-iridium(III) complexes in LEECs prompted us to investigate the role played by the selected cathode and the thickness of the emitting layer, as well as the doping effect exerted by ionic liquids on the performance of the devices. All the devices exhibited a deep red emission, in some cases, quite near the pure color (devices #1, #4, and #8), expanding the panorama of the iridium-based red-to-near-infrared LEEC devices. The characteristics of the devices, such as the brightness reaching values of 162 cd/m2 for device #7, suggested that the performances of cis-1 are comparable to those of trans isomers, opening new perspective toward designing a new set of luminescent materials for optoelectronic devices.

5.
Materials (Basel) ; 12(14)2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31373302

ABSTRACT

Zinc oxide nanoparticles (ZnONPs) and stearic acid are herein used for the preparation of hydrophobic coatings with good moisture barrier property on flexible plastic substrates. Fast, high throughput, mild and easy-to-run processing techniques, like airbrushing and gravure printing, are applied for thin films deposition of these materials. The results of this study indicated that the best hydrophobic coating in terms of water contact angle (115°) is obtained through a two-steps printing deposition of a ZnONPs layer followed by a stearic acid layer. All the deposition procedures proved to be effective in terms of water vapor barrier properties, reaching values of 0.89 g/m2/day, with a 45% reduction with respect to the bare substrate. These preliminary data are very encouraging in the perspective of a low cost and green approach for the realization of functional coatings for packaging applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...