Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(6)2022 Mar 11.
Article in English | MEDLINE | ID: mdl-35326608

ABSTRACT

Non-small-cell lung cancer (NSCLC), a subtype of lung cancer, remains one of the most common tumors with a high mortality and morbidity rate. Numerous targeted drugs were implemented or are now developed for the treatment of NSCLC. Two genes, HER2 and MET, are among targets for these specific therapeutic agents. Alterations in HER2 and MET could lead to primary or acquired resistance to commonly used anti-EGFR drugs. Using current methods for detecting HER2 and MET amplifications is time and labor-consuming; alternative methods are required for HER2 and MET testing. We developed the first multiplex droplet digital PCR assay for the simultaneous detection of MET and HER2 amplification in NSCLC samples. The suitability of qPCR was assessed for the optimization of multiplex ddPCR. The optimal elongation temperature, reference genes for DNA quantification, and amplicon length were selected. The developed ddPCR was validated on control samples with various DNA concentrations and ratios of MET and HER2 genes. Using ddPCR, 436 EGFR-negative NSCLC samples were analyzed. Among the tested samples, five specimens (1.15%) showed a higher ratio of MET, and six samples (1.38%) showed a higher ratio of HER2. The reported multiplex ddPCR assay could be used for the routine screening of MET and HER2 amplification in NSCLC samples.

2.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072209

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is a method of nucleic acid amplification that is more stable and resistant to DNA amplification inhibitors than conventional PCR. LAMP multiplexing with reverse transcription allows for the single-tube amplification of several RNA fragments, including an internal control sample, which provides the option of controlling all analytical steps. We developed a method of SARS-CoV-2 viral RNA detection based on multiplex reverse-transcription LAMP, with single-tube qualitative analysis of SARS-CoV-2 RNA and MS2 phage used as a control RNA. The multiplexing is based on the differences in characteristic melting peaks generated during the amplification process. The developed technique detects at least 20 copies of SARS-CoV-2 RNA per reaction on a background of 12,000 MS2 RNA copies. The total time of analysis does not exceed 40 min. The method validation, performed on 125 clinical samples of patients' nasal swabs, showed a 97.6% concordance rate with the results of real-time (RT)-PCR assays. The developed multiplexed LAMP can be employed as an alternative to PCR in diagnostic practice to save personnel and equipment time.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans , Nucleic Acid Denaturation
SELECTION OF CITATIONS
SEARCH DETAIL
...