Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 128(22): 4493-4506, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38787346

ABSTRACT

Heteroaromatic molecules are found in areas ranging from biochemistry to photovoltaics. We analyze the n,π* excited states of 6π-electron heteroaromatics with in-plane lone pairs (nσ, herein n) and use qualitative theory and quantum chemical computations, starting at Mandado's 2n + 1 rule for aromaticity of separate spins. After excitation of an electron from n to π*, a (4n + 2)π-electron species has 2n + 2 πα-electrons and 2n + 1 πß-electrons (or vice versa) and becomes πα-antiaromatic and πß-aromatic. Yet, the antiaromatic πα- and aromatic πß-components seldom cancel, leading to residuals with aromatic or antiaromatic character. We explore vertically excited triplet n,π* states (3n,π*), which are most readily analyzed, but also singlet n,π* states (1n,π*), and explain which compounds have n,π* states with aromatic residuals as their lowest excited states (e.g., pyrazine and the phenyl anion). If the πß-electron population becomes more (less) uniformly distributed upon excitation, the system will have an (anti)aromatic residual. Among isomers, the one that has the most aromatic residual in 3n,π* is often of the lowest energy in this state. Five-membered ring heteroaromatics with one or two N, O, and/or S atoms never have n,π* states as their first excited states (T1 and S1), while this is nearly always the case for six-membered ring heteroaromatics with electropositive heteroatoms and/or highly symmetric (D2h) diheteroaromatics. For the complete compound set, there is a modest correlation between the (anti)aromatic character of the n,π* state and the energy gap between the lowest n,π* and π,π* states (R2 = 0.42), while it is stronger for monosubstituted pyrazines (R2 = 0.84).

2.
J Biol Inorg Chem ; 21(5-6): 645-57, 2016 09.
Article in English | MEDLINE | ID: mdl-27364958

ABSTRACT

Many non-heme iron enzymes have similar sets of ligands but still catalyze widely different reactions. A key question is, therefore, the role of the protein in controlling reactivity and selectivity. Examples from multiscale simulations, primarily QM/MM, of both mono- and binuclear non-heme iron enzymes are used to analyze the stability of these models and what they reveal about the protein effects. Consistent results from QM/MM modeling are the importance of the hydrogen bond network to control reactivity and electrostatic stabilization of electron transfer from second-sphere residues. The long-range electrostatic effects on reaction barriers are small for many systems. In the systems where large electrostatic effects have been reported, these lead to higher barriers. There is thus no evidence of any significant long-range electrostatic effects contributing to the catalytic efficiency of non-heme iron enzymes. However, the correct evaluation of electrostatic contributions is challenging, and the correlation between calculated residue contributions and the effects of mutation experiments is not very strong. The largest benefits of QM/MM models are thus the improved active-site geometries, rather than the calculation of accurate energies. Reported differences in mechanistic predictions between QM and QM/MM models can be explained by differences in hydrogen bonding patterns in and around the active site. Correctly constructed cluster models can give results with similar accuracy as those from multiscale models, but the latter reduces the risk of drawing the wrong mechanistic conclusions based on incorrect geometries and are preferable for all types of modeling, even when using very large QM parts.


Subject(s)
Molecular Dynamics Simulation , Nonheme Iron Proteins/metabolism , Biocatalysis , Nonheme Iron Proteins/chemistry , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...