Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 5: 10188, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25973778

ABSTRACT

The structure of amorphous GeSe2 (a-GeSe2) has been studied by means of a combination of two-edges X-ray absorption spectroscopy (XAS) and angle-dispersive X-ray diffraction under pressures up to about 30 GPa. Multiple-edge XAS data-analysis of a-GeSe2 at ambient conditions allowed us to reconstruct and compare the first-neighbor distribution function with previous results obtained by neutron diffraction with isotopic substitution. GeSe2 is found to remain amorphous up to the highest pressures attained, and a reversible 1.5 eV red-shift of the Ge K-edge energy indicating metallization, occurs between 10 GPa and 15 GPa. Two compression stages are identified by XAS structure refinement. First, a decrease of the first-neighbor distances up to about 10 GPa, in the same pressure region of a previously observed breakdown of the intermediate-range order. Second, an increase of the Ge-Se distances, bond disorder, and of the coordination number. This stage is related to a reversible non-isostructural transition involving a gradual conversion from tetra- to octa-hedral geometry which is not yet fully completed at 30 GPa.

2.
Sci Rep ; 4: 4952, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24824987

ABSTRACT

The study of highly photo-excited matter at solid state density is an emerging field of research, which is benefitting the development of free-electron-laser (FEL) technology. We report an extreme ultraviolet (XUV) reflectivity experiment from a titanium (Ti) sample irradiated with ultrafast seeded FEL pulses at variable incident photon fluence and frequency. Using a Drude formalism we relate the observed increase in reflectivity as a function of the excitation fluence to an increase in the plasma frequency, which allows us to estimate the free electron density in the excited sample. The extreme simplicity of the experimental setup makes the present approach potentially a valuable complementary tool to determine the average ionization state of the excited sample, information of primary relevance for understanding the physics of matter under extreme conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...