Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 134
Filter
1.
Rev. psiquiatr. salud ment. (Barc., Ed. impr.) ; 11(4): 199-207, oct.-dic. 2018. tab
Article in Spanish | IBECS | ID: ibc-176753

ABSTRACT

Introducción: Se presenta la primera descripción del estudio denominado Andalusian Bipolar Family (ABiF). Se trata de una investigación longitudinal con familias procedentes de Andalucía (España), que comenzó en 1997, con el objetivo de dilucidar las causas geneticomoleculares del trastorno afectivo bipolar. Desde entonces, esta cohorte ha contribuido a una serie de hallazgos clave, que han sido publicados en revistas internacionales. Sin embargo, el conocimiento sobre las bases genéticas del trastorno en estas familias sigue siendo limitado. Método: El estudio consta de dos fases: en la fase inicial se reclutaron 100 familias con múltiples afectados de trastorno bipolar y otros trastornos del ánimo. La segunda fase del proyecto, actualmente en curso, comenzó en 2013 con el objetivo de realizar un seguimiento de la cohorte de familias reclutadas originalmente. Los objetivos del estudio de seguimiento son: I) recoger nuevos datos clínicos longitudinales; II) realizar una evaluación neuropsicológica detallada, y III) obtener una extensa colección de biomateriales para futuros estudios moleculares. Resultados: El estudio ABiF, por tanto, generará unos recursos valiosos para futuras investigaciones sobre la etiología del trastorno afectivo bipolar; particularmente con respecto a las causas de la alta carga genética del trastorno en las familias con múltiples afectados. Discusión: Se discute el valor de este enfoque en relación con las nuevas tecnologías para la identificación de factores genéticos de alta penetrancia. Estas nuevas tecnologías incluyen la secuenciación del exoma y del genoma completo, y el uso de células madre pluripotentes inducidas u organismos modelo para la determinación de consecuencias funcionales


Introduction: Here, we present the first description of the Andalusian Bipolar Family (ABiF) Study. This longitudinal investigation of families from Andalusia, Spain commenced in 1997 with the aim of elucidating the molecular genetic causes of bipolar affective disorder. The cohort has since contributed to a number of key genetic findings, as reported in international journals. However, insight into the genetic underpinnings of the disorder in these families remains limited. Method: In the initial 1997-2003 study phase, 100 multiplex bipolar disorder and other mood disorder families were recruited. The ongoing second phase of the project commenced in 2013, and involves follow-up of a subgroup of the originally recruited families. The aim of the follow-up investigation is to generate: I) longitudinal clinical data; II) results from detailed neuropsychological assessments; and III) a more extensive collection of biomaterials for future molecular biological studies. Results: The ABiF Study will thus generate a valuable resource for future investigations into the aetiology of bipolar affective disorder; in particular the causes of high disease loading within multiply affected families. Discussion: We discuss the value of this approach in terms of new technologies for the identification of high-penetrance genetic factors. These new technologies include exome and whole genome sequencing, and the use of induced pluripotent stem cells or model organisms to determine functional consequences


Subject(s)
Humans , Bipolar Disorder/genetics , Genetic Diseases, Inborn/epidemiology , Mood Disorders/genetics , Bipolar Disorder/epidemiology , Risk Factors , Geography, Medical/statistics & numerical data , Mental Disorders/genetics , Family
2.
Rev Psiquiatr Salud Ment (Engl Ed) ; 11(4): 199-207, 2018.
Article in English, Spanish | MEDLINE | ID: mdl-28619597

ABSTRACT

INTRODUCTION: Here, we present the first description of the Andalusian Bipolar Family (ABiF) Study. This longitudinal investigation of families from Andalusia, Spain commenced in 1997 with the aim of elucidating the molecular genetic causes of bipolar affective disorder. The cohort has since contributed to a number of key genetic findings, as reported in international journals. However, insight into the genetic underpinnings of the disorder in these families remains limited. METHOD: In the initial 1997-2003 study phase, 100 multiplex bipolar disorder and other mood disorder families were recruited. The ongoing second phase of the project commenced in 2013, and involves follow-up of a subgroup of the originally recruited families. The aim of the follow-up investigation is to generate: i) longitudinal clinical data; ii) results from detailed neuropsychological assessments; and iii) a more extensive collection of biomaterials for future molecular biological studies. RESULTS: The ABiF Study will thus generate a valuable resource for future investigations into the aetiology of bipolar affective disorder; in particular the causes of high disease loading within multiply affected families. DISCUSSION: We discuss the value of this approach in terms of new technologies for the identification of high-penetrance genetic factors. These new technologies include exome and whole genome sequencing, and the use of induced pluripotent stem cells or model organisms to determine functional consequences.


Subject(s)
Bipolar Disorder/genetics , Adult , Aged , Bipolar Disorder/diagnosis , Clinical Protocols , Family , Female , Genetic Markers , Humans , Longitudinal Studies , Male , Middle Aged , Neuropsychological Tests , Spain , Exome Sequencing , Whole Genome Sequencing
3.
World J Biol Psychiatry ; 18(7): 492-505, 2017 10.
Article in English | MEDLINE | ID: mdl-28112043

ABSTRACT

OBJECTIVES: Schizophrenia is a severe psychiatric disease affecting about 1% of the general population. The relative contribution of genetic factors has been estimated to be up to 80%. The mode of inheritance is complex, non-Mendelian, and in most cases involving the combined action of large numbers of genes. METHODS: This review summarises recent efforts to identify genetic variants associated with schizophrenia detected, e.g., through genome-wide association studies, studies on copy-number variants or next-generation sequencing. RESULTS: A large, new body of evidence on genetics of schizophrenia has accumulated over recent years. Many new robustly associated genetic loci have been detected. Furthermore, there is consensus that at least a dozen microdeletions and microduplications contribute to the disease. Genetic overlap between schizophrenia, other psychiatric disorders, and neurodevelopmental syndromes raised new questions regarding the current classification of psychiatric and neurodevelopmental diseases. CONCLUSIONS: Future studies will address especially the functional characterisation of genetic variants. This will hopefully open the doors to our understanding of the pathophysiology of schizophrenia and other related diseases. Complementary, integrated systems biology approaches to genomics, transcriptomics, proteomics and metabolomics may also play crucial roles in enabling a precision medicine approach to the treatment of individual patients.


Subject(s)
Consensus , Schizophrenia/genetics , Humans
4.
World J Biol Psychiatry ; 18(1): 5-28, 2017 02.
Article in English | MEDLINE | ID: mdl-27603714

ABSTRACT

Major depressive disorder (MDD) is a heritable disease with a heavy personal and socio-economic burden. Antidepressants of different classes are prescribed to treat MDD, but reliable and reproducible markers of efficacy are not available for clinical use. Further complicating treatment, the diagnosis of MDD is not guided by objective criteria, resulting in the risk of under- or overtreatment. A number of markers of MDD and antidepressant response have been investigated at the genetic, epigenetic, gene expression and protein levels. Polymorphisms in genes involved in antidepressant metabolism (cytochrome P450 isoenzymes), antidepressant transport (ABCB1), glucocorticoid signalling (FKBP5) and serotonin neurotransmission (SLC6A4 and HTR2A) were among those included in the first pharmacogenetic assays that have been tested for clinical applicability. The results of these investigations were encouraging when examining patient-outcome improvement. Furthermore, a nine-serum biomarker panel (including BDNF, cortisol and soluble TNF-α receptor type II) showed good sensitivity and specificity in differentiating between MDD and healthy controls. These first diagnostic and response-predictive tests for MDD provided a source of optimism for future clinical applications. However, such findings should be considered very carefully because their benefit/cost ratio and clinical indications were not clearly demonstrated. Future tests may include combinations of different types of biomarkers and be specific for MDD subtypes or pathological dimensions.


Subject(s)
Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Epigenesis, Genetic , Genetic Markers , Consensus , Humans , Neuronal Plasticity , Randomized Controlled Trials as Topic , Transcriptome
5.
Gut ; 65(8): 1296-305, 2016 08.
Article in English | MEDLINE | ID: mdl-26001389

ABSTRACT

OBJECTIVE: Microsatellite instability (MSI) is detected in approximately 15% of all colorectal cancers (CRC) and virtually in all cases with Lynch syndrome. The MSI phenotype is caused by dysfunctional mismatch repair (MMR) and leads to accumulation of DNA replication errors. Sporadic MSI CRC often harbours BRAF(V600E); however, no consistent data exist regarding targeted treatment approaches in BRAF(wt) MSI CRC. DESIGN: Mutations and quantitative MSI were analysed by deep sequencing in 196 formalin fixed paraffin embedded (FFPE) specimens comprising Lynch and Lynch-like CRCs from the German Hereditary Nonpolyposis Colorectal Cancer registry. Functional relevance of recurrent ERBB2/HER2 mutations was investigated in CRC cell lines using reversible and irreversible HER-targeting inhibitors, EGFR-directed antibody cetuximab, HER2-directed antibody trastuzumab and siRNA-mediated ERBB2/HER2 knockdown. RESULTS: Quantification of nucleotide loss in non-coding mononucleotide repeats distinguished microsatellite status with very high accuracy (area under curve=0.9998) and demonstrated progressive losses with deeper invasion of MMR-deficient colorectal neoplasms (p=0.008). Characterisation of BRAF(wt) MSI CRC revealed hot-spot mutations in well-known oncogenic drivers, including KRAS (38.7%), PIK3CA (36.5%), and ERBB2 (15.0%). L755S and V842I substitutions in ERBB2 were highly recurrent. Functional analyses in ERBB2-mutated MSI CRC cell lines revealed a differential response to HER-targeting compounds and superiority of irreversible pan-HER inhibitors. CONCLUSIONS: We developed a high-throughput deep sequencing approach for concomitant MSI and mutational analyses in FFPE specimens. We provided novel insights into clinically relevant alterations in MSI CRC and a rationale for targeting ERBB2/HER2 mutations in Lynch and Lynch-like CRC.


Subject(s)
Cetuximab/pharmacology , Colorectal Neoplasms, Hereditary Nonpolyposis , Colorectal Neoplasms , ErbB Receptors , Receptor, ErbB-2 , Trastuzumab/pharmacology , Antineoplastic Agents/pharmacology , Cell Culture Techniques , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/drug therapy , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/genetics , Female , Humans , Male , Microsatellite Instability , Middle Aged , Pharmacogenomic Testing/methods , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics
6.
Sci Rep ; 5: 16286, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26553438

ABSTRACT

Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10(-7)), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10(-7)); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10(-7) and OR = 1.09, P = 7.4 × 10(-8)); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10(-9)), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10(-6)). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10(-4)) and DNA mismatch repair genes (P = 6.1 × 10(-4)) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Variation , Activating Transcription Factor 1/genetics , Adaptor Proteins, Signal Transducing , Alleles , Cadherins/genetics , Case-Control Studies , Colorectal Neoplasms/pathology , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Intracellular Signaling Peptides and Proteins , Linkage Disequilibrium , Odds Ratio , Polymorphism, Single Nucleotide , Proteins/genetics , White People/genetics
9.
Int J Cancer ; 135(1): 69-77, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24493211

ABSTRACT

Carriers of mismatch repair (MMR) gene mutations have a high lifetime risk for colorectal and endometrial cancers, as well as other malignancies. As mutation analysis to detect these patients is expensive and time-consuming, clinical criteria and tumor-tissue analysis are widely used as pre-screening methods. The aim of our study was to evaluate the performance of commonly applied clinical criteria (the Amsterdam I and II Criteria, and the original and revised Bethesda Guidelines) and the results of tumor-tissue analysis in predicting MMR gene mutations. We analyzed 3,671 families from the German HNPCC Registry and divided them into nine mutually exclusive groups with different clinical criteria. A total of 680 families (18.5%) were found to have a pathogenic MMR gene mutation. Among all 1,284 families with microsatellite instability-high (MSI-H) colorectal cancer, the overall mutation detection rate was 53.0%. Mutation frequencies and their distribution between the four MMR genes differed significantly between clinical groups (p < 0.001). The highest frequencies were found in families fulfilling the Amsterdam Criteria (46.4%). Families with loss of MSH2 expression had higher mutation detection rates (69.5%) than families with loss of MLH1 expression (43.1%). MMR mutations were found significantly more often in families with at least one MSI-H small-bowel cancer (p < 0.001). No MMR mutations were found among patients under 40-years-old with only colorectal adenoma. Familial clustering of Lynch syndrome-related tumors, early age of onset, and familial occurrence of small-bowel cancer were clinically relevant predictors for Lynch syndrome.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , MutS Homolog 2 Protein/genetics , Nuclear Proteins/genetics , Adenosine Triphosphatases/genetics , Adult , Aged , Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , DNA Mismatch Repair/genetics , DNA Mutational Analysis , DNA Repair Enzymes/genetics , DNA-Binding Proteins/genetics , Female , Germ-Line Mutation , Humans , Male , Microsatellite Instability , Middle Aged , Mismatch Repair Endonuclease PMS2 , MutL Protein Homolog 1
10.
Carcinogenesis ; 35(2): 315-23, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24127187

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancer worldwide. However, a large number of genetic risk factors involved in CRC have not been understood. Copy number variations (CNVs) might partly contribute to the 'missing heritability' of CRC. An increased overall burden of CNV has been identified in several complex diseases, whereas the association between the overall CNV burden and CRC risk is largely unknown. We performed a genome-wide investigation of CNVs on genomic DNA from 384 familial CRC cases and 1285 healthy controls by the Affymetrix 6.0 array. An increase of overall CNV burden was observed in familial CRC patients compared with healthy controls, especially for CNVs larger than 50kb (case/control ratio = 1.66, P = 0.025). In addition, we discovered for the first time a novel structural variation at 12p12.3 and determined the breakpoints by strategic PCR and sequencing. This 12p12.3 structural variation was found in four of 2862 CRC cases but not in 6243 healthy controls (P = 0.0098). RERGL gene (RERG/RAS-like), the only gene influenced by the 12p12.3 structural variation, sharing most of the conserved regions with its close family member RERG tumor suppressor gene (RAS-like, estrogen-regulated, growth inhibitor), might be a novel CRC-related gene. In conclusion, this is the first study to reveal the contribution of the overall burden of CNVs to familial CRC risk and identify a novel rare structural variation at 12p12.3 containing RERGL gene to be associated with CRC.


Subject(s)
Biomarkers, Tumor/genetics , Chromosomes, Human, Pair 12/chemistry , Chromosomes, Human, Pair 12/genetics , Colorectal Neoplasms/genetics , DNA Copy Number Variations , Genome, Human , Genome-Wide Association Study , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , GTP Phosphohydrolases/genetics , Gene Rearrangement , Humans , Male , Middle Aged , Polymerase Chain Reaction , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Risk Factors , Young Adult
12.
J Natl Cancer Inst ; 105(16): 1249-53, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23852950

ABSTRACT

Biallelic inherited mutations in the oxidative DNA damage repair gene MUTYH predispose to colorectal adenomas and colorectal carcinoma (CRC) with high penetrance. We investigated whether rare inherited variants in other oxidative DNA damage repair genes predisposed to CRC. Single marker association analyses were assessed under an allelic model with Bonferroni correction for multiple testing. All statistical tests were two-sided. A rare inherited nonsynonymous variant in OGG1 (Gly308Glu), the functional partner of MUTYH, was over-represented in case patients with advanced CRC compared with population-based control subjects (n = 36 of 2142 case patients vs n = 15 of 2175 control subjects in the training phase, P = 1.8×10(-3); and n = 22 of 1005 case patients vs n = 8 of 1389 control subjects in the validation phase, P = 4.8×10(-4); P = 1.4×10(-5) combined; odds ratio = 2.92, 95% confidence interval = 1.80 to 4.74). Glycine at residue 308 was highly conserved through evolution, and the glutamic acid substitution was predicted as likely to interfere with function. Biallelic inherited and somatic OGG1 mutations were rarely observed in OGG1 (Gly308Glu) carriers, nor did we find any associated somatic mutator phenotype. These data suggest that OGG1 (Gly308Glu) may act as a low-penetrance allele that contributes to colorectal tumorigenesis.


Subject(s)
Adenoma/genetics , Carcinoma/genetics , Colorectal Neoplasms/genetics , DNA Damage , DNA Glycosylases/genetics , DNA Repair/genetics , Mutation , Adult , Aged , Aged, 80 and over , Alleles , Case-Control Studies , Female , Gene Expression Regulation, Neoplastic , Glutamic Acid , Glycine , Humans , Male , Middle Aged , Odds Ratio , Oxidation-Reduction , Penetrance , Up-Regulation
14.
Dtsch Arztebl Int ; 110(3): 32-8, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23413378

ABSTRACT

BACKGROUND: Hereditary nonpolyposis colorectal cancer HNPCC, Lynch syndrome) is a genetic disease of autosomal dominant inheritance. It is caused by a mutation in one of four genes of the DNA mismatch repair system and confers a markedly increased risk for various types of cancer, particularly of the colon and the endometrium. Its prevalence in the general population is about 1 in 500, and it causes about 2% to 3% of all colorectal cancers. Lynch syndrome is diagnosed in two steps: If it is suspected (because a patient develops cancer at an unusually young age or because of familial clustering), the tumor tissue is analyzed for evidence of deficient mismatch repair (microsatellite instability, loss of mismatch repair protein expression). If such evidence is found, a genetic mutation is sought. The identification of a pathogenic mutation confirms the diagnosis in the patient and enables predictive testing of other family members. Diagnostic evaluations for Lynch syndrome should be carried out with appropriate genetic counseling. METHOD: Selective literature review. RESULTS: Prospective cohort studies from Germany, Finland and the Netherlands have shown that colorectal cancers detected by systematic colonoscopic surveillance tend to be at an earlier stage than those that are discovered after the patients present with symptoms. The Finnish study also showed an overall reduction in cancer risk from colonoscopic polypectomy at regular intervals. CONCLUSION: The studies conducted so far have not yet clearly documented the putative benefit of an individualized, risk-adapted surveillance strategy. Until this is done, patients with Lynch syndrome and healthy carriers of causative mutations should be monitored with annual colonoscopy and (for women) annual gynecological examination.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/diagnosis , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Genetic Counseling/methods , Genetic Markers/genetics , Genetic Predisposition to Disease/genetics , Genetic Testing/methods , Polymorphism, Single Nucleotide/genetics , Diagnosis, Differential , Humans
15.
J Clin Oncol ; 30(35): 4409-15, 2012 Dec 10.
Article in English | MEDLINE | ID: mdl-23091106

ABSTRACT

PURPOSE: Patients with Lynch syndrome are at high risk for colon and endometrial cancer, but also at an elevated risk for other less common cancers. The purpose of this retrospective cohort study was to provide risk estimates for these less common cancers in proven carriers of pathogenic mutations in the mismatch repair (MMR) genes MLH1, MSH2, and MSH6. PATIENTS AND METHODS: Data were pooled from the German and Dutch national Lynch syndrome registries. Seven different cancer types were analyzed: stomach, small bowel, urinary bladder, other urothelial, breast, ovarian, and prostate cancer. Age-, sex- and MMR gene-specific cumulative risks (CRs) were calculated using the Kaplan-Meier method. Sex-specific incidence rates were compared with general population incidence rates by calculating standardized incidence ratios (SIRs). Multivariate Cox regression analysis was used to estimate the impact of sex and mutated gene on cancer risk. RESULTS: The cohort comprised 2,118 MMR gene mutation carriers (MLH1, n = 806; MSH2, n = 1,004; MSH6, n = 308). All cancers were significantly more frequent than in the general population. The highest risks were found for male small bowel cancer (SIR, 251; 95% CI, 177 to 346; CR at 70 years, 12.0; 95% CI, 5.7 to 18.2). Breast cancer showed an SIR of 1.9 (95% CI, 1.4 to 2.4) and a CR of 14.4 (95% CI, 9.5 to 19.3). MSH2 mutation carriers had a considerably higher risk of developing urothelial cancer than MLH1 or MSH6 carriers. CONCLUSION: The sex- and gene-specific differences of less common cancer risks should be taken into account in cancer surveillance and prevention programs for patients with Lynch syndrome.


Subject(s)
Colorectal Neoplasms, Hereditary Nonpolyposis/epidemiology , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Neoplasms/epidemiology , Neoplasms/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Cohort Studies , DNA-Binding Proteins/genetics , Female , Germany/epidemiology , Humans , Male , Middle Aged , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Mutation , Netherlands/epidemiology , Nuclear Proteins/genetics , Registries , Retrospective Studies , Risk Factors
16.
Nat Genet ; 44(9): 968-71, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22863734

ABSTRACT

We have conducted the first meta-analyses for nonsyndromic cleft lip with or without cleft palate (NSCL/P) using data from the two largest genome-wide association studies published to date. We confirmed associations with all previously identified loci and identified six additional susceptibility regions (1p36, 2p21, 3p11.1, 8q21.3, 13q31.1 and 15q22). Analysis of phenotypic variability identified the first specific genetic risk factor for NSCLP (nonsyndromic cleft lip plus palate) (rs8001641; P(NSCLP) = 6.51 × 10(-11); homozygote relative risk = 2.41, 95% confidence interval (CI) 1.84-3.16).


Subject(s)
Cleft Lip/genetics , Cleft Palate/genetics , Genome-Wide Association Study/statistics & numerical data , Adult , Child , Cleft Lip/complications , Cleft Lip/epidemiology , Cleft Palate/complications , Cleft Palate/epidemiology , Female , Genetic Predisposition to Disease , Humans , Male , Parents , Polymorphism, Single Nucleotide/physiology , Risk Factors , Syndrome
17.
Fam Cancer ; 11(1): 19-26, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22086303

ABSTRACT

Lynch syndrome (Hereditary non-polyposis colorectal cancer/HNPCC) is a cancer susceptibility syndrome which is caused by germline mutations in DNA mismatch repair (MMR) genes, in particular MLH1 and MSH2. A pathogenic germline mutation in the respective MMR gene is suggested by the finding of a loss of a mismatch repair protein in tumor tissue on immunohistochemical staining combined with an early age of onset and/or the familial occurrence of colorectal cancer. Pathogenic germline mutations are identifiable in around 60% of patients suspected of Lynch syndrome, depending on the familial occurrence. The aim of the present study was to identify novel susceptibility genes for Lynch syndrome. 64 Healthy controls and 64 Lynch syndrome patients with no pathogenic MSH2 mutation but a loss of MSH2 expression in their tumor tissue were screened for rare and disease causing germline mutations in the functional candidate genes ESR1, ESR2, MAX, PCNA, and KAT2A. Thirty variants were identified, and these were then genotyped in an independent sample of 36 mutation negative Lynch syndrome patients and 234 controls. Since a trend towards association was observed for KAT2A, an additional set of 21 tagging SNPs was analyzed at this locus in a final case-control sample of 142 mutation negative Lynch syndrome patients and 298 controls. The mutation analysis failed to reveal any rare disease-causing mutations. No association was found at the single-marker or haplotypic level for any common disease-modifying variant. The present results suggest that neither rare nor common genetic variants in ESR1, ESR2, MAX, PCNA, or KAT2A contribute to the development of Lynch syndrome.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Histone Acetyltransferases/genetics , MutS Homolog 2 Protein/genetics , Mutation/genetics , Proliferating Cell Nuclear Antigen/genetics , Case-Control Studies , Follow-Up Studies , Humans , Immunoenzyme Techniques , Microsatellite Repeats , MutS Homolog 2 Protein/metabolism , Prognosis
18.
Lab Invest ; 91(12): 1695-705, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21826055

ABSTRACT

Four and a half LIM domain protein-2 (FHL2) is a component of the focal adhesion structures and has been suggested to have an important role in cancer progression. This study analyses the role of FHL2 in peritumoural fibroblasts of sporadic and hereditary non-polyposis colorectal cancer (HNPCC). Tissue specimens of 48 sporadic and 49 hereditary colon cancers, respectively, were stained immunohistochemically for FHL2, transforming growth factor (TGF)-ß1 ligand and α-SMA. Myofibroblasts at the tumour invasion front co-expressed α-SMA and FHL2. Sporadic colon cancer but not HNPCC cases showed a correlation between TGF-ß1 expression of the invading tumour cells and FHL2 staining of peritumoural myofibroblasts. Overexpression of FHL2 in peritumoural myofibroblasts correlated to lymphatic metastasis in sporadic colon cancer but not in HNPCC. In cultured mouse fibroblasts, TGF-ß1 treatment induced myofibroblast differentiation, stimulated FHL2 protein expression and elevated number of migratory cells in transwell motility assays, suggesting that FHL2 is regulated downstream of TGF-ß. Physical contact of colon cancer cells and myofibroblasts via FHL2-positive focal adhesions was detected in human colon carcinoma tissue and in co-culture assays using sporadic as well as HNPCC-derived tumour cell lines. Our data provide strong evidence for an important role of FHL2 in the progression of colon cancers. Tumour-secreted TGF-ß1 stimulates FHL2 protein expression in peritumoural fibroblasts, probably facilitating the invasion of tumour glands into the surrounding tissue by enhanced myofibroblast migration and tight connection of fibroblasts to tumour cells via focal adhesions. These findings are absent in HNPCC-associated colon cancers in vivo and may contribute to a less invasive and more protruding tumour margin of microsatellite instable carcinomas.


Subject(s)
Carcinoma/metabolism , Colorectal Neoplasms, Hereditary Nonpolyposis/metabolism , Fibroblasts/metabolism , LIM-Homeodomain Proteins/metabolism , Muscle Proteins/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta1/metabolism , Actins/metabolism , Animals , Carcinoma/pathology , Cell Migration Assays , Colon/pathology , Colorectal Neoplasms, Hereditary Nonpolyposis/pathology , Female , Humans , Lymphatic Metastasis , Male , Mice , Middle Aged , Neoplasm Invasiveness
19.
PLoS One ; 6(6): e20464, 2011.
Article in English | MEDLINE | ID: mdl-21674048

ABSTRACT

Molecular sensing in the lingual mucosa and in the gastro-intestinal tract play a role in the detection of ingested harmful drugs and toxins. Therefore, genetic polymorphisms affecting the capability of initiating these responses may be critical for the subsequent efficiency of avoiding and/or eliminating possible threats to the organism. By using a tagging approach in the region of Taste Receptor 2R38 (TAS2R38) gene, we investigated all the common genetic variation of this gene region in relation to colorectal cancer risk with a case-control study in a German population (709 controls and 602 cases) and in a Czech population (623 controls and 601 cases). We found that there were no significant associations between individual SNPs of the TAS2R38 gene and colorectal cancer in the Czech or in the German population, nor in the joint analysis. However, when we analyzed the diplotypes and the phenotypes we found that the non-taster group had an increased risk of colorectal cancer in comparison to the taster group. This association was borderline significant in the Czech population, (OR = 1.28, 95% CI 0.99-1.67; P(value) = 0.058) and statistically significant in the German population (OR = 1.36, 95% CI 1.06-1.75; P(value) = 0.016) and in the joint analysis (OR = 1.34, 95% CI 1.12-1.61; P(value) = 0.001). In conclusion, we found a suggestive association between the human bitter tasting phenotype and the risk of CRC in two different populations of Caucasian origin.


Subject(s)
Colorectal Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide , Receptors, G-Protein-Coupled/genetics , White People/genetics , Adult , Aged , Case-Control Studies , Female , Haplotypes/genetics , Humans , Male , Middle Aged , Phenotype , Quality Control
20.
Int J Mol Epidemiol Genet ; 2(1): 36-50, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21537400

ABSTRACT

Colorectal cancer (CRC) is a complex disease related to environmental and genetic risk factors. Several studies have shown that susceptibility to complex diseases can be mediated by ancestral alleles. Using RNAi screening, CTNNBL1 was identified as a putative regulator of the Wnt signaling pathway, which plays a key role in colorectal carcinogenesis. Recently, single nucleotide polymorphisms (SNPs) in CTNNBL1 have been associated with obesity, a known risk factor for CRC. We investigated whether genetic variation in CTNNBL1 affects susceptibility to CRC and tested for signals of recent selection. We applied a tagging SNP approach that cover all known common variation in CTNNBL1 (allele frequency >5%; r(2)>0.8). A case-control study was carried out using two well-characterized study populations: a hospital-based Czech population composed of 751 sporadic cases and 755 controls and a family/early onset-based German population (697 cases and 644 controls). Genotyping was performed using allele specific PCR based TaqMan® assays (Applied Biosystems, Weiterstadt, Germany). In the Czech cohort, containing sporadic cases, the ancestral alleles of three SNPs showed evidence of association with CRC: rs2344481 (OR 1.44, 95%CI 1.06-1.95, dominant model), rs2281148 (OR 0.59, 95%CI 0.36-0.96, dominant model) and rs2235460 (OR 1.38, 95%CI 1.01-1.89, AA vs. GG). The associations were less prominent in the family/early onset-based German cohort. Data derived from several databases and statistical tests consistently pointed to a likely shaping of CTNNBL1 by positive selection. Further studies are needed to identify the actual function of CTNNBL1 and to validate the association results in other populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...