Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Anaerobe ; 84: 102802, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38007214

ABSTRACT

OBJECTIVES: Clostridium perfringens is a well-known spore-forming bacterium that can resist the environment. A mixture of volatile fatty acids or thermal treatments can interact with these bacteria. The aim of this study was to evaluate the effects of different volatile fatty acid concentrations and moderate heat treatment on Clostridium perfringens sporulation. METHODS: A pure culture of Clostridium perfringens type A in Duncan Strong medium was treated with a mixture of volatile fatty acids at several concentrations. A thermal treatment was also tested. To evaluate the effects, a double staining method was employed, and treatments on Clostridium perfringens were analysed by flow cytometry. RESULTS: Moderate heat treatment destroyed vegetative forms but had no effect on sporulating forms. Volatile fatty acids combined with moderate heat treatment inhibited Clostridium perfringens sporulation. CONCLUSIONS: The use of flow cytometry as an original method for evaluating the treatment of Clostridium perfringens is of interest because of its simplicity, short time to obtain results, and the level of information provided on the microbial population (impact on metabolism). A combination of mild treatments (moderate heat treatment + volatile fatty acids) to decrease the Clostridium perfringens concentration when these bacteria sporulate is a very promising finding for inhibiting Clostridium perfringens propagation.


Subject(s)
Clostridium perfringens , Hot Temperature , Flow Cytometry , Spores, Bacterial
2.
J Biophotonics ; 16(5): e202200266, 2023 05.
Article in English | MEDLINE | ID: mdl-36642886

ABSTRACT

Current solutions for bacteria and viruses identification are based on time-consuming technics with complex preparation procedures. In the present work, we revealed label-free the presence of free viral particles and bacteria with a computational two-photon fluorescence (C-TPF) strategy. Six bacteria were tested: Escherichia coli, Staphylococcus epidermidis, Proteus vulgaris, Pseudomonas fluorescens, Bacillus subtilis, and Clostridium perfringens. The two families of viral particles were the herpes virus with the cytomegalovirus (CMV, 300 nm of diameter) and the coronavirus with the SARS-CoV-2 (100 nm of diameter). The instrumental and computational pipeline FAMOUS optimized the produced 3D images. The origin of the fluorescence emission was discussed for bacteria regarding to their two-photon excitation spectra and attributed to the metabolic indicators (FAD and NADH). The optical and computational strategy constitute a new approach for imaging label-free viral particles and bacteria and paves the way to a new understanding of viral or bacterial ways of infection.


Subject(s)
COVID-19 , Viruses , Humans , Fluorescence , SARS-CoV-2 , Bacillus subtilis
3.
Appl Environ Microbiol ; 80(16): 4832-41, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24907330

ABSTRACT

The aim of this study was to investigate the effects on the cell membranes of Escherichia coli of 2.45-GHz microwave (MW) treatment under various conditions with an average temperature of the cell suspension maintained at 37°C in order to examine the possible thermal versus nonthermal effects of short-duration MW exposure. To this purpose, microwave irradiation of bacteria was performed under carefully defined and controlled parameters, resulting in a discontinuous MW exposure in order to maintain the average temperature of the bacterial cell suspensions at 37°C. Escherichia coli cells were exposed to 200- to 2,000-W discontinuous microwave (DW) treatments for different periods of time. For each experiment, conventional heating (CH) in a water bath at 37°C was performed as a control. The effects of DW exposure on cell membranes was investigated using flow cytometry (FCM), after propidium iodide (PI) staining of cells, in addition to the assessment of intracellular protein release in bacterial suspensions. No effect was detected when bacteria were exposed to conventional heating or 200 W, whereas cell membrane integrity was slightly altered when cell suspensions were subjected to powers ranging from 400 to 2,000 W. Thermal characterization suggested that the temperature reached by the microwave-exposed samples for the contact time studied was not high enough to explain the measured modifications of cell membrane integrity. Because the results indicated that the cell response is power dependent, the hypothesis of a specific electromagnetic threshold effect, probably related to the temperature increase, can be advanced.


Subject(s)
Cell Membrane/radiation effects , Escherichia coli/radiation effects , Cell Membrane/chemistry , Escherichia coli/cytology , Hot Temperature , Microwaves
4.
Water Res ; 42(18): 4674-82, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18783812

ABSTRACT

A microwave-enhanced advanced hydrogen peroxide oxidation process (MW/H(2)O(2)-AOP) was studied in order to investigate the synergetic effects of MW irradiation on H(2)O(2) treated waste activated sludges (WAS) in terms of mineralization (permanent stabilization), sludge disintegration/solubilization, and subsequent anaerobic biodegradation as well as dewaterability after digestion. Thickened WAS sample pretreated with 1gH(2)O(2)/g total solids (TS) lost 11-34% of its TS, total chemical oxygen demand (COD) and total biopolymers (humic acids, proteins and sugars) via advanced oxidation. In a temperature range of 60-120 degrees C, elevated MW temperatures (>80 degrees C) further increased the decomposition of H(2)O(2) into OH* radicals and enhanced both oxidation of COD and solubilization of particulate COD (>0.45 micron) of WAS indicating that a synergetic effect was observed when both H(2)O(2) and MW treatments were combined. However, at all temperatures tested, MW/H(2)O(2) treated samples had lower first-order mesophilic (33+/-2 degrees C) biodegradation rate constants and ultimate (after 32 days of digestion) methane yields (mL per gram sample) compared to control and MW irradiated WAS samples, indicating that synergistically (MW/H(2)O(2)-AOP) generated soluble organics were slower to biodegrade or more refractory than those generated during MW irradiation.


Subject(s)
Hydrogen Peroxide/chemistry , Microwaves , Sewage/chemistry , Anaerobiosis , Biodegradation, Environmental , Hydrogen Peroxide/metabolism , Oxidation-Reduction/radiation effects , Sewage/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...