Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(7): e2309777, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37992676

ABSTRACT

The layered insulator hexagonal boron nitride (hBN) is a critical substrate that brings out the exceptional intrinsic properties of two-dimensional (2D) materials such as graphene and transition metal dichalcogenides (TMDs). In this work, the authors demonstrate how hBN slabs tuned to the correct thickness act as optical waveguides, enabling direct optical coupling of light emission from encapsulated layers into waveguide modes. Molybdenum selenide (MoSe2 ) and tungsten selenide (WSe2 ) are integrated within hBN-based waveguides and demonstrate direct coupling of photoluminescence emitted by in-plane and out-of-plane transition dipoles (bright and dark excitons) to slab waveguide modes. Fourier plane imaging of waveguided photoluminescence from MoSe2 demonstrates that dry etched hBN edges are an effective out-coupler of waveguided light without the need for oil-immersion optics. Gated photoluminescence of WSe2 demonstrates the ability of hBN waveguides to collect light emitted by out-of-plane dark excitons.Numerical simulations explore the parameters of dipole placement and slab thickness, elucidating the critical design parameters and serving as a guide for novel devices implementing hBN slab waveguides. The results provide a direct route for waveguide-based interrogation of layered materials, as well as a way to integrate layered materials into future photonic devices at arbitrary positions whilst maintaining their intrinsic properties.

2.
Nano Lett ; 23(2): 422-428, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36602464

ABSTRACT

A broad effort is underway to understand and harness the interaction between superconductors and spin-active color centers with an eye on hybrid quantum devices and novel imaging modalities of superconducting materials. Most work, however, overlooks the interplay between either system and the environment created by the color center host. Here we use a diamond scanning probe to investigate the spin dynamics of a single nitrogen-vacancy (NV) center proximal to a superconducting film. We find that the presence of the superconductor increases the NV spin coherence lifetime, a phenomenon we tentatively rationalize as a change in the electric noise due to a superconductor-induced redistribution of charge carriers near induced redistribution of charge carriers near the NV. We then build on these findings to demonstrate transverse-relaxation-time-weighted imaging of the superconductor film. These results shed light on the dynamics governing the spin coherence of shallow NVs, and promise opportunities for new forms of noise spectroscopy and imaging of superconductors.

3.
ACS Nano ; 16(10): 16260-16270, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36223545

ABSTRACT

Bilayers of 2D materials offer opportunities for creating devices with tunable electronic, optical, and mechanical properties. In van der Waals heterostructures (vdWHs) where the constituent monolayers have different lattice constants, a moiré superlattice forms with a length scale larger than the lattice constant of either constituent material regardless of twist angle. Here, we report the appearance of moiré Raman modes from nearly aligned WSe2-WS2 vdWHs in the range of 240-260 cm-1, which are absent in both monolayers and homobilayers of WSe2 and WS2 and in largely misaligned WSe2-WS2 vdWHs. Using first-principles calculations and geometric arguments, we show that these moiré Raman modes are a consequence of the large moiré length scale, which results in zone-folded phonon modes that are Raman active. These modes are sensitive to changes in twist angle, but notably, they occur at identical frequencies for a given small twist angle away from either the 0-degree or 60-degree aligned heterostructure. Our measurements also show a strong Raman intensity modulation in the frequency range of interest, with near 0 and near 60-degree vdWHs exhibiting a markedly different dependence on excitation energy. In near 0-degree aligned WSe2-WS2 vdWHs, a nearly complete suppression of both the moiré Raman modes and the WSe2 A1g Raman mode (∼250 cm-1) is observed when exciting with a 532 nm CW laser at room temperature. Temperature-dependent reflectance contrast measurements demonstrate the significant Raman intensity modulation arises from resonant Raman effects.

4.
Sci Rep ; 7: 40718, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176792

ABSTRACT

The response of an individual meta-atom is often generalized to explain the collective response of a metasurface in a manner that neglects the interactions between meta-atoms. Here, we study a metasurface composed of tilted achiral meta-atoms with no spatial variation of the unit cell that derives appreciable optical chirality solely from the asymmetric interactions between meta-atoms. The interactions between meta-atoms are considered to stem from the Lorentz force arising from the Larmor radiation of adjacent plasmonic resonators because their inclusion in a simple model accurately predicts the bonding/anti- bonding modes that are measured experimentally. We also experimentally observe the emergence of multiple polarization eigenmodes, among other polarization-dependent responses, which cannot be modeled with the conventional formalism of transmission matrices. Our results are vital to the precise characterization and design of metasurfaces.

5.
Opt Express ; 24(10): 10402-11, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409864

ABSTRACT

There is wide interest in understanding and leveraging the nonlinear plasmon-induced potentials of nanostructured materials. We investigate the electrical response produced by spin-polarized light across a large-area bottom-up assembled 2D plasmonic crystal. Numerical approximations of the Lorentz forces provide quantitative agreement with our experimentally-measured DC voltages. We show that the underlying mechanism of the spin-polarized voltages is a gradient force that arises from asymmetric, time-averaged hotspots, whose locations shift with the chirality of light. Finally, we formalize the role of spin-orbit interactions in the shifted intensity patterns and significantly advance our understanding of the physical phenomena, often related to the spin Hall effect of light.

SELECTION OF CITATIONS
SEARCH DETAIL
...