Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Sci ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34679365

ABSTRACT

Before the course of Alzheimer's disease fully manifests itself and largely impairs a patient's cognitive abilities, its progression has already lasted for a considerable time without being noticed. In this project, we mapped the development of spatial orientation impairment in an active place avoidance task-a highly sensitive test for mild hippocampal damage. We tested vision, anxiety and spatial orientation performance at four age levels of 4, 6, 9, and 12 months across male and female TgF-344 AD rats carrying human genes for presenilin-1 and amyloid precursor protein. We found a progressive deterioration of spatial navigation in transgenic animals, beginning already at the age of 4 months, that fully developed at 6 months of age across both male and female groups, compared to their age-matched controls. In addition, we described the gradual vision impairment that was accentuated in females at the age of 12 months. These results indicate a rather early onset of cognitive impairment in the TgF-344 AD Alzheimer's disease model, starting earlier than shown to date, and preceding the reported development of amyloid plaques.

2.
Sci Rep ; 11(1): 5999, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33727592

ABSTRACT

Amyloid plaques are small (~ 50 µm), highly-dense aggregates of amyloid beta (Aß) protein in brain tissue, supposed to play a key role in pathogenesis of Alzheimer's disease (AD). Plaques´ in vivo detection, spatial distribution and quantitative characterization could be an essential marker in diagnostics and evaluation of AD progress. However, current imaging methods in clinics possess substantial limits in sensitivity towards Aß plaques to play a considerable role in AD screening. Contrast enhanced X-ray micro computed tomography (micro CT) is an emerging highly sensitive imaging technique capable of high resolution visualization of rodent brain. In this study we show the absorption based contrast enhanced X-ray micro CT imaging is viable method for detection and 3D analysis of Aß plaques in transgenic rodent models of Alzheimer's disease. Using iodine contrasted brain tissue isolated from the Tg-F344-AD rat model we show the micro CT imaging is capable of precise imaging of Aß plaques, making possible to further analyze various aspects of their 3D spatial distribution and other properties.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Contrast Media , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/pathology , Radiographic Image Enhancement , X-Ray Microtomography , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Biomarkers , Brain/diagnostic imaging , Brain/metabolism , Brain/pathology , Disease Models, Animal , Female , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Plaque, Amyloid/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...