Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Fungi (Basel) ; 8(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36422031

ABSTRACT

The yeast Malassezia pachydermatis, an opportunistic pathogen that inhabits the skin of various domestic and wild animals, is capable of producing a biofilm that plays an important role in antifungal resistance. The aim of this research study was to find the intensity of biofilm production by M. pachydermatis strains isolated from the ear canal of healthy dogs, and to determine the susceptibility of planktonic, adhered and biofilm-forming cells to three azole antifungals-itraco-nazole, voriconazole and posaconazole-that are most commonly used to treat Malassezia infections. Out of 52 isolates, 43 M. pachydermatis strains (82.7%) were biofilm producers with varying levels of intensity. For planktonic cells, the minimum inhibitory concentration (MIC) range was 0.125-2 µg/mL for itraconazole, 0.03-1 µg/mL for voriconazole and 0.03-0.25 µg/mL for posaconazole. Only two isolates (4.7%) were resistant to itraconazole, one strain (2.3%) to voriconazole and none to posaconazole. For adhered cells and the mature biofilm, the following MIC ranges were found: 0.25-16 µg/mL and 4-16 µg/mL for itraconazole, 0.125-8 µg/mL and 0.25-26 µg/mL for voriconazole, and 0.03-4 µg/mL and 0.25-16 µg/mL for posaconazole, respectively. The least resistance for adhered cells was observed for posaconazole (55.8%), followed by voriconazole (62.8%) and itraconazole (88.4%). The mature biofilm of M. pachydermatis showed 100% resistance to itraconazole, 95.3% to posaconazole and 83.7% to voriconazole. The results of this study show that higher concentrations of commonly used antifungal agents are needed to control infections caused by biofilm-forming strains of M. pachydermatis.

2.
Ann Agric Environ Med ; 28(3): 414-418, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34558263

ABSTRACT

INTRODUCTION: Fusaria are microscopic filamentous fungi which are spread in soil, in various organic substrates, and include more than 80 phytopathogenic species which are predominantly hosted by cereals, fruits and vegetables. Many of these species, under certain conditions, are capable of synthesizing secondary metabolites, mycotoxins. At present, various substances are used for their elimination and one of the solutions appears to be essential oils. In the presented study, the antifungal activity of essential oils was researched in vitro. MATERIAL AND METHODS: In this study, two standard fungal isolates Fusarium graminearum CCM F-683 and Fusarium graminearum CCM 8244 (Brno, Czech Republic) were used. The antifungal effect of 6 tested essential oils (Syzygium aromaticum, Origanum vulgare, Thymus vulgaris, Hyssopus officinalis , Ocimum basilicum, Myristica fragrans) was determined using the broth microdilution method, which allows reading of the MIC (minimum inhibitory concentration). According to the results obtained, the growth inhibition of Fusarium graminearum was determined by assay for the inhibition of radial growth of the mycelium. RESULTS: The inhibitory effects of thymus, oregano, basil, myristica, hyssop and syzygium essential oil (EO) on mycelial growth of Fusarium graminearum CCM F-683 and CCM 8244 were investigated. The best antifungal activity against the both strains of Fusarium graminearum (37.4%; 40.7%) was demonstrated by Origanum vulgare EO at the concentration 100 µg/mL. Among the four tested oils, three (Syzygium aromaticum, Thymus vulgaris, Origanum vulgare) achieved the best inhibitory effect (100%) at concentrations 500 µg/mL and 1000 µg/mL. CONCLUSIONS: In the protection of plants against pathogenic fungi, essential oils appear to be a suitable substitute for synthetic chemicals.


Subject(s)
Fungicides, Industrial/pharmacology , Fusarium/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Fusarium/growth & development , Hyssopus Plant/chemistry , Microbial Sensitivity Tests , Myristica/chemistry , Ocimum basilicum/chemistry , Origanum/chemistry , Syzygium/chemistry , Thymus Plant/chemistry
3.
Ann Agric Environ Med ; 28(2): 260-266, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34184508

ABSTRACT

INTRODUCTION: The virulence of Candida albicans is conditioned by several virulence factors, one of which is the formation of biofilm which reduces the sensitivity of the yeast to conventional antimycotics. This study determines the antifungal and antibiofilm activity of five essential oils (EOs) of the Lamiaceae family: Salvia officinalis, Thymus vulgaris, Rosmarinus officinalis, Origanum vulgare, and Hyssopus officinalis. MATERIAL AND METHODS: In the preliminary research, the antifungal effect of eachof the EOs was tested in the concentration range of 200-0.4 mg/mL on planktonic Candida albicans (C. albicans) cells. A total of 13 C. albicans clinical isolates and one reference strain were evaluated on biofilm formation. RESULTS: Nine isolates (69.2%) showed weak biofilm production and four strains (30.8%) were detected as moderate biofilm producers. The EOs of Thymus vulgaris and Origanum vulgare were seen as effective antifungal agents on planktonic cells with the MIC 0.4 mg/mL. The highest average MIC values were recorded in Salvia officinalis EO (24.0 and 14.8 mg/mL). All isolates were used to determine EOs efficacy on the inhibition of adherence phase and biofilm formation. The biofilm production of C. albicans after exposition by EOs was quantitatively examined by crystal violet dye. CONCLUSIONS: The most effective for adherence phase and biofilm formation were EOs of Origanum vulgare (0.1 mg/mL and 0.3 mg/mL) and Thymus vulgaris (0.1 mg/mL and 0.4 mg/mL). The obtained results show that EOs of Thymus vulgaris and Origanum vulgare are potential agents for antifungal treatment or prophylaxis by reducing the resistance of pathogen.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Candidiasis/microbiology , Lamiaceae/chemistry , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Candidiasis/drug therapy , Humans , Microbial Sensitivity Tests , Origanum/chemistry , Plant Extracts/pharmacology , Salvia officinalis/chemistry , Thymus Plant/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...